1,811 research outputs found

    Low-degree tests at large distances

    Full text link
    We define tests of boolean functions which distinguish between linear (or quadratic) polynomials, and functions which are very far, in an appropriate sense, from these polynomials. The tests have optimal or nearly optimal trade-offs between soundness and the number of queries. In particular, we show that functions with small Gowers uniformity norms behave ``randomly'' with respect to hypergraph linearity tests. A central step in our analysis of quadraticity tests is the proof of an inverse theorem for the third Gowers uniformity norm of boolean functions. The last result has also a coding theory application. It is possible to estimate efficiently the distance from the second-order Reed-Muller code on inputs lying far beyond its list-decoding radius

    Lower bounds for adaptive linearity tests

    Get PDF
    Linearity tests are randomized algorithms which have oracle access to the truth table of some function f, and are supposed to distinguish between linear functions and functions which are far from linear. Linearity tests were first introduced by (Blum, Luby and Rubenfeld, 1993), and were later used in the PCP theorem, among other applications. The quality of a linearity test is described by its correctness c - the probability it accepts linear functions, its soundness s - the probability it accepts functions far from linear, and its query complexity q - the number of queries it makes. Linearity tests were studied in order to decrease the soundness of linearity tests, while keeping the query complexity small (for one reason, to improve PCP constructions). Samorodnitsky and Trevisan (Samorodnitsky and Trevisan 2000) constructed the Complete Graph Test, and prove that no Hyper Graph Test can perform better than the Complete Graph Test. Later in (Samorodnitsky and Trevisan 2006) they prove, among other results, that no non-adaptive linearity test can perform better than the Complete Graph Test. Their proof uses the algebraic machinery of the Gowers Norm. A result by (Ben-Sasson, Harsha and Raskhodnikova 2005) allows to generalize this lower bound also to adaptive linearity tests. We also prove the same optimal lower bound for adaptive linearity test, but our proof technique is arguably simpler and more direct than the one used in (Samorodnitsky and Trevisan 2006). We also study, like (Samorodnitsky and Trevisan 2006), the behavior of linearity tests on quadratic functions. However, instead of analyzing the Gowers Norm of certain functions, we provide a more direct combinatorial proof, studying the behavior of linearity tests on random quadratic functions..

    A Hypergraph Dictatorship Test with Perfect Completeness

    Full text link
    A hypergraph dictatorship test is first introduced by Samorodnitsky and Trevisan and serves as a key component in their unique games based \PCP construction. Such a test has oracle access to a collection of functions and determines whether all the functions are the same dictatorship, or all their low degree influences are o(1).o(1). Their test makes q3q\geq3 queries and has amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}) but has an inherent loss of perfect completeness. In this paper we give an adaptive hypergraph dictatorship test that achieves both perfect completeness and amortized query complexity 1+O(logqq)1+O(\frac{\log q}{q}).Comment: Some minor correction

    Constant-Soundness Interactive Proofs for Local Hamiltonians

    Get PDF
    \newcommand{\Xlin}{\mathcal{X}} \newcommand{\Zlin}{\mathcal{Z}} \newcommand{\C}{\mathbb{C}} We give a quantum multiprover interactive proof system for the local Hamiltonian problem in which there is a constant number of provers, questions are classical of length polynomial in the number of qubits, and answers are of constant length. The main novelty of our protocol is that the gap between completeness and soundness is directly proportional to the promise gap on the (normalized) ground state energy of the Hamiltonian. This result can be interpreted as a concrete step towards a quantum PCP theorem giving entangled-prover interactive proof systems for QMA-complete problems. The key ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld, where the function f:{0,1}n{0,1}f:\{0,1\}^n\to\{0,1\} is replaced by a pair of functions \Xlin, \Zlin:\{0,1\}^n\to \text{Obs}_d(\C), the set of dd-dimensional Hermitian matrices that square to identity. The test enforces that (i) each function is exactly linear, \Xlin(a)\Xlin(b)=\Xlin(a+b) and \Zlin(a) \Zlin(b)=\Zlin(a+b), and (ii) the two functions are approximately complementary, \Xlin(a)\Zlin(b)\approx (-1)^{a\cdot b} \Zlin(b)\Xlin(a).Comment: 33 page

    Robust self-testing of many-qubit states

    Get PDF
    We introduce a simple two-player test which certifies that the players apply tensor products of Pauli σX\sigma_X and σZ\sigma_Z observables on the tensor product of nn EPR pairs. The test has constant robustness: any strategy achieving success probability within an additive ε\varepsilon of the optimal must be poly(ε)\mathrm{poly}(\varepsilon)-close, in the appropriate distance measure, to the honest nn-qubit strategy. The test involves 2n2n-bit questions and 22-bit answers. The key technical ingredient is a quantum version of the classical linearity test of Blum, Luby, and Rubinfeld. As applications of our result we give (i) the first robust self-test for nn EPR pairs; (ii) a quantum multiprover interactive proof system for the local Hamiltonian problem with a constant number of provers and classical questions and answers, and a constant completeness-soundness gap independent of system size; (iii) a robust protocol for delegated quantum computation.Comment: 36 pages. Improves upon and supersedes our earlier submission arXiv:1512.0209

    Load curve data cleansing and imputation via sparsity and low rank

    Full text link
    The smart grid vision is to build an intelligent power network with an unprecedented level of situational awareness and controllability over its services and infrastructure. This paper advocates statistical inference methods to robustify power monitoring tasks against the outlier effects owing to faulty readings and malicious attacks, as well as against missing data due to privacy concerns and communication errors. In this context, a novel load cleansing and imputation scheme is developed leveraging the low intrinsic-dimensionality of spatiotemporal load profiles and the sparse nature of "bad data.'' A robust estimator based on principal components pursuit (PCP) is adopted, which effects a twofold sparsity-promoting regularization through an 1\ell_1-norm of the outliers, and the nuclear norm of the nominal load profiles. Upon recasting the non-separable nuclear norm into a form amenable to decentralized optimization, a distributed (D-) PCP algorithm is developed to carry out the imputation and cleansing tasks using networked devices comprising the so-termed advanced metering infrastructure. If D-PCP converges and a qualification inequality is satisfied, the novel distributed estimator provably attains the performance of its centralized PCP counterpart, which has access to all networkwide data. Computer simulations and tests with real load curve data corroborate the convergence and effectiveness of the novel D-PCP algorithm.Comment: 8 figures, submitted to IEEE Transactions on Smart Grid - Special issue on "Optimization methods and algorithms applied to smart grid

    Quantum Locally Testable Codes

    Full text link
    We initiate the study of quantum Locally Testable Codes (qLTCs). We provide a definition together with a simplification, denoted sLTCs, for the special case of stabilizer codes, together with some basic results using those definitions. The most crucial parameter of such codes is their soundness, R(δ)R(\delta), namely, the probability that a randomly chosen constraint is violated as a function of the distance of a word from the code (δ\delta, the relative distance from the code, is called the proximity). We then proceed to study limitations on qLTCs. In our first main result we prove a surprising, inherently quantum, property of sLTCs: for small values of proximity, the better the small-set expansion of the interaction graph of the constraints, the less sound the qLTC becomes. This phenomenon, which can be attributed to monogamy of entanglement, stands in sharp contrast to the classical setting. The complementary, more intuitive, result also holds: an upper bound on the soundness when the code is defined on poor small-set expanders (a bound which turns out to be far more difficult to show in the quantum case). Together we arrive at a quantum upper-bound on the soundness of stabilizer qLTCs set on any graph, which does not hold in the classical case. Many open questions are raised regarding what possible parameters are achievable for qLTCs. In the appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the result of Ben-Sasson et. al. by which PCPPs imply LTCs with related parameters, carries over to the sLTCs. This creates a first link between qLTCs and quantum PCPs.Comment: Some of the results presented here appeared in an initial form in our quant-ph submission arXiv:1301.3407. This is a much extended and improved version. 30 pages, no figure
    corecore