21 research outputs found

    Bounded Concurrent Timestamp Systems Using Vector Clocks

    Full text link
    Shared registers are basic objects used as communication mediums in asynchronous concurrent computation. A concurrent timestamp system is a higher typed communication object, and has been shown to be a powerful tool to solve many concurrency control problems. It has turned out to be possible to construct such higher typed objects from primitive lower typed ones. The next step is to find efficient constructions. We propose a very efficient wait-free construction of bounded concurrent timestamp systems from 1-writer multireader registers. This finalizes, corrects, and extends, a preliminary bounded multiwriter construction proposed by the second author in 1986. That work partially initiated the current interest in wait-free concurrent objects, and introduced a notion of discrete vector clocks in distributed algorithms.Comment: LaTeX source, 35 pages; To apper in: J. Assoc. Comp. Mac

    Sharing memory in distributed systems

    Full text link
    We propose an algorithm for simulating atomic registers, test-and-set, fetch-and-add, and read-modify-write registers in a message passing system. The algorithm is fault tolerant and works correctly in presence of up to (N/2) -1 node failures where N is the number of processors in the system. The high resilience of the algorithm is obtained by using randomized consensus algorithms and a robust communication primitive. The use of this primitive allows a processor to exchange local information with a majority of processors in a consistent way, and therefore to take decisions safely. The simulator makes it possible to translate algorithms for the shared memory model to that for the message passing model. With some minor modifications the algorithm can be used to robustly simulate shared queues, shared stacks, etc. (Abstract shortened with permission of author.)

    On Implementing SWMR Registers from SWSR Registers in Systems with Byzantine Failures

    Get PDF

    Step Optimal Implementations of Large Single-Writer Registers

    Get PDF
    We present two wait-free algorithms for simulating an l-bit single-writer register from k-bit single-writer registers, for any k >= 1. Our first algorithm has big-theta(l/k) step complexity for both Read and Write and uses big-theta (4^(l-k)) registers. An interesting feature of the algorithm is that Read operations do not write to shared variables. Our second algorithm has big-theta (l/k + (log n)/k) step complexity for both Read and Write, where n is the number of readers, but uses only big-theta (nl/k + n(log n)/k) registers. Combining both algorithms gives an implementation with big-theta (l/k) step complexity using big-theta (nl/k) space for any 1 <= k < l. We also prove that any implementation with big-O (l/k) step complexity for Read requires big-omega (l/k) step complexity for Write. Since reading l-bits requires at least ceiling(l/k) reads of k-bit registers, our lower bound shows that our implementation is step optimal

    Anonymous Readers Counting: A Wait-Free Multi-Word Atomic Register Algorithm for Scalable Data Sharing on Multi-Core Machines

    Get PDF
    In this article we present Anonymous Readers Counting (ARC), a multi-word atomic (1,N) register algorithm for multi-core machines. ARC exploits Read-Modify-Write (RMW) instructions to coordinate the writer and reader threads in a wait-free manner and enables large-scale data sharing by admitting up to (232-2) concurrent readers on off-the-shelf 64-bit machines, as opposed to the most advanced RMW-based approach which is limited to 58 readers on the same kind of machines. Further, ARC avoids multiple copies of the register content when accessing it - this is a problem that affects classical register algorithms based on atomic read/write operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces the overall power consumption, via a proper limitation of RMW instructions in case of read operations re-accessing a still-valid snapshot of the register content, and by showing constant time for read operations and amortized constant time for write operations. Our proposal has therefore a strong focus on real-world off-the-shelf architectures, allowing us to capture properties which benefit both performance and power consumption. A proof of correctness of our register algorithm is also provided, together with experimental data for a comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times, proper of modern paradigms such as cloud computing. Finally, we discuss how to extend ARC for scenarios with multiple writers and multiple readers - the so called (M,N) register. This is achieved not by changing the operations (and their wait-free nature) executed along the critical path of the threads, rather only changing the ratio between the number of buffers keeping the register snapshots and the number of threads to coordinate, as well as the number of bits used for counting readers within a 64-bit mask accessed via RMW instructions - just depending on the target balance between the number of readers and the number of writers to be supported

    Functional dependencies of variables in wait-free programs

    Full text link
    corecore