2,199 research outputs found

    Simple Photonic Emission Attack with Reduced Data Complexity

    Get PDF
    This work proposes substantial algorithmic enhancements to the SPEA attack of Schlosser et al. by adding cryptographic post-processing, and improved signal processing to the photonic measurement phase. Our improved approach provides three crucial benefits: (1) For some SBox/SRAM configurations the original SPEA method is unable to identify a unique key, and terminates with up to 2^48 key candidates; using our new solver we are able to find the correct key regardless of the respective SBox/SRAM configuration. (2) Our methods reduce the number of required (complex photonic) measurements by an order of magnitude, thereby shortening the duration of the attack significantly. (3) Due to the unavailability of the attack equipment of Schlosser et al. we additionally developed a novel Photonic Emission Simulator which we matched against the real equipment of the original SPEA work. With this simulator we were able to verify our enhanced SPEA attack by a full AES recovery which uses only a small number of photonic measurements

    Photonic Entanglement for Fundamental Tests and Quantum Communication

    Full text link
    Entanglement is at the heart of fundamental tests of quantum mechanics like tests of Bell-inequalities and, as discovered lately, of quantum computation and communication. Their technological advance made entangled photons play an outstanding role in entanglement physics. We give a generalized concept of qubit entanglement and review the state of the art of photonic experiments.Comment: 54 pages, 33 figures. Review article submitted to QIC (Rinton

    Infrared optical filters based in macroporous silicon for espectroscopic gas detection

    Get PDF
    Aplicat embargament des de la data de defensa fins el 31 de desembre de 2021Gas detection is of great importance in areas as diverse as industry, health or safety in domestic environments or public spaces, among others, and it is highly specific to each application. The detection method depends on factors such as the species of gas to be detected, concentration range, required resolution, sensitivity, specificity, response time, operating environment (temperature, humidity, interfering species, etc.), size and cost, among other considerations. Optical gas sensors are an attractive solution for gas detection. Most of them rely on molecular absorption and offer fast responses, minimal drift and are intrinsically reliable thanks to perform self-referenced measurements. Sensitivity and selectivity depend on the characteristics of the device. For example, laser-based gas sensors are highly selective with zero cross response to other gases and also with first-in-class sensitivity. The downside is that they are expensive. Non-dispersive infra-red (NDIR) sensors are a widespread alternative for cost-effective optical detection. They have inferior performances in terms of sensitivity and selectivity than laser-based sensors, but are two or three orders of magnitude less expensive. This thesis is dedicated to improving the selectivity and sensitivity of NDIR devices through the use of macroporous silicon technology. More specifically, it studies how photonic crystals manufactured by electrochemical etching can be used as narrow mid-infrared filters for gas detection purposes. That is, the photonic crystals are designed in such a way that only a small range of frequencies from an external source are transmitted while the surroundings are blocked. These filters are narrower than those available on the market and can be used to improve the selectivity and the sensitivity of NDIR devices as well as to reduce cross detection with other gases. In addition, the study shows how macroporous silicon photonic crystals can be heated to work as selective emitters. This can be used to reduce the complexity of the NDIR device while maintaining similar optical characteristics. Furthermore, it is proven that photonic molecules can be employed to perform dual detection in both transmission and emission, giving a new approach to self-referenced measurements. Conclusions of the work show that macroporous silicon technology is a versatile platform to provide solutions in the mid-infrared range for developing compact, sensitive and selective optical gas sensing.La detecció de gasos és de gran importància en àrees tan diverses com la indústria, la salut o la seguretat en entorns domèstics o espais públics, entre d'altres, i és altament específica per a cada aplicació. El mètode de detecció a utilitzar depèn de factors com ara el gas a detectar, el rang de concentració, la resolució requerida, la sensibilitat, l'especificitat, el temps de resposta, l'entorn operatiu (temperatura, humitat, espècies interferents, etc. .), la mida i el cost, entre altres consideracions. Els sensors òptics de gas són una solució atractiva per a la detecció de gas. La majoria d'ells es basen en l'absorció molecular i ofereixen respostes ràpides, deriva mínima i són intrínsecament fiables gràcies a la realització de mesures auto-referenciades. La sensibilitat i la selectivitat depenen de les característiques del dispositiu. Per exemple, els sensors de gas basats en tecnologia làser són altament selectius, no presenten resposta creuada a altres gasos i són altament sensibles. El desavantatge és que són cars. Els sensors d'infrarojos no dispersius (NDIR) són una alternativa molt estesa per a la detecció òptica de baix cost. Tenen un rendiment inferior en termes de sensibilitat i selectivitat que els sensors basats en làser, però són dos o tres ordres de magnitud més barats. Aquesta tesi està dedicada a millorar la selectivitat i la sensibilitat dels dispositius NDIR mitjançant la tecnologia de silici macroporós. Més específicament, estudia com els cristalls fotònics fabricats mitjançant el gravat electroquímic poden ser usats com a filtres estrets d'infraroig mitjà per a la detecció de gasos. És a dir, els cristalls fotònics estan dissenyats de tal manera que només un petit rang de freqüències d'una font externa es transmet mentre que els voltants estan bloquejats. Aquests filtres són més estrets que els disponibles en el mercat i poden utilitzar-se per millorar la selectivitat i la sensibilitat dels dispositius NDIR, així com per reduir la detecció creuada amb altres gasos. A més, l'estudi mostra com els cristalls fotònics de silici macroporós poden funcionar com a emissors selectius si són escalfats. Això pot ser usat per reduir la complexitat dels dispositius NDIR alhora que es mantenen característiques òptiques similars. A més, s'ha demostrat que les molècules fotòniques poden emprar-se per realitzar una detecció dual tant en la transmissió com en l'emissió, donant un nou enfocament a les mesures auto-referenciades. Les conclusions del treball mostren que la tecnologia de silici macroporós és una plataforma versàtil que proporciona solucions en el rang d'infraroig mitjà per al desenvolupament de sensors de gas òptics compactes, sensibles i selectius.Postprint (published version

    Why Cryptography Should Not Rely on Physical Attack Complexity

    Full text link

    Quantum key distribution with entangled photons generated on demand by a quantum dot

    Get PDF
    Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication
    corecore