7,591 research outputs found

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Maximum Independent Sets in Subcubic Graphs: New Results

    Get PDF
    The maximum independent set problem is known to be NP-hard in the class of subcubic graphs, i.e. graphs of vertex degree at most 3. We present a polynomial-time solution in a subclass of subcubic graphs generalizing several previously known results

    On neighbour sum-distinguishing {0,1}\{0,1\}-edge-weightings of bipartite graphs

    Get PDF
    Let SS be a set of integers. A graph G is said to have the S-property if there exists an S-edge-weighting w:E(G)→Sw : E(G) \rightarrow S such that any two adjacent vertices have different sums of incident edge-weights. In this paper we characterise all bridgeless bipartite graphs and all trees without the {0,1}\{0,1\}-property. In particular this problem belongs to P for these graphs while it is NP-complete for all graphs.Comment: Journal versio
    • …
    corecore