67,937 research outputs found

    Computational identification and analysis of noncoding RNAs - Unearthing the buried treasures in the genome

    Get PDF
    The central dogma of molecular biology states that the genetic information flows from DNA to RNA to protein. This dogma has exerted a substantial influence on our understanding of the genetic activities in the cells. Under this influence, the prevailing assumption until the recent past was that genes are basically repositories for protein coding information, and proteins are responsible for most of the important biological functions in all cells. In the meanwhile, the importance of RNAs has remained rather obscure, and RNA was mainly viewed as a passive intermediary that bridges the gap between DNA and protein. Except for classic examples such as tRNAs (transfer RNAs) and rRNAs (ribosomal RNAs), functional noncoding RNAs were considered to be rare. However, this view has experienced a dramatic change during the last decade, as systematic screening of various genomes identified myriads of noncoding RNAs (ncRNAs), which are RNA molecules that function without being translated into proteins [11], [40]. It has been realized that many ncRNAs play important roles in various biological processes. As RNAs can interact with other RNAs and DNAs in a sequence-specific manner, they are especially useful in tasks that require highly specific nucleotide recognition [11]. Good examples are the miRNAs (microRNAs) that regulate gene expression by targeting mRNAs (messenger RNAs) [4], [20], and the siRNAs (small interfering RNAs) that take part in the RNAi (RNA interference) pathways for gene silencing [29], [30]. Recent developments show that ncRNAs are extensively involved in many gene regulatory mechanisms [14], [17]. The roles of ncRNAs known to this day are truly diverse. These include transcription and translation control, chromosome replication, RNA processing and modification, and protein degradation and translocation [40], just to name a few. These days, it is even claimed that ncRNAs dominate the genomic output of the higher organisms such as mammals, and it is being suggested that the greater portion of their genome (which does not encode proteins) is dedicated to the control and regulation of cell development [27]. As more and more evidence piles up, greater attention is paid to ncRNAs, which have been neglected for a long time. Researchers began to realize that the vast majority of the genome that was regarded as “junk,” mainly because it was not well understood, may indeed hold the key for the best kept secrets in life, such as the mechanism of alternative splicing, the control of epigenetic variations and so forth [27]. The complete range and extent of the role of ncRNAs are not so obvious at this point, but it is certain that a comprehensive understanding of cellular processes is not possible without understanding the functions of ncRNAs [47]

    TRAPID : an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes

    Get PDF
    Transcriptome analysis through next-generation sequencing technologies allows the generation of detailed gene catalogs for non-model species, at the cost of new challenges with regards to computational requirements and bioinformatics expertise. Here, we present TRAPID, an online tool for the fast and efficient processing of assembled RNA-Seq transcriptome data, developed to mitigate these challenges. TRAPID offers high-throughput open reading frame detection, frameshift correction and includes a functional, comparative and phylogenetic toolbox, making use of 175 reference proteomes. Benchmarking and comparison against state-of-the-art transcript analysis tools reveals the efficiency and unique features of the TRAPID system

    HMM with auxiliary memory: a new tool for modeling RNA structures

    Get PDF
    For a long time, proteins have been believed to perform most of the important functions in all cells. However, recent results in genomics have revealed that many RNAs that do not encode proteins play crucial roles in the cell machinery. The so-called ncRNA genes that are transcribed into RNAs but not translated into proteins, frequently conserve their secondary structures more than they conserve their primary sequences. Therefore, in order to identify ncRNA genes, we have to take the secondary structure of RNAs into consideration. Traditional approaches that are mainly based on base-composition statistics cannot be used for modeling and identifying such structures and models with more descriptive power are required. In this paper, we introduce the concept of context-sensitive HMMs, which is capable of describing pairwise interactions between distant symbols. It is demonstrated that the proposed model can efficiently model various RNA secondary structures that are frequently observed

    Identifying statistical dependence in genomic sequences via mutual information estimates

    Get PDF
    Questions of understanding and quantifying the representation and amount of information in organisms have become a central part of biological research, as they potentially hold the key to fundamental advances. In this paper, we demonstrate the use of information-theoretic tools for the task of identifying segments of biomolecules (DNA or RNA) that are statistically correlated. We develop a precise and reliable methodology, based on the notion of mutual information, for finding and extracting statistical as well as structural dependencies. A simple threshold function is defined, and its use in quantifying the level of significance of dependencies between biological segments is explored. These tools are used in two specific applications. First, for the identification of correlations between different parts of the maize zmSRp32 gene. There, we find significant dependencies between the 5' untranslated region in zmSRp32 and its alternatively spliced exons. This observation may indicate the presence of as-yet unknown alternative splicing mechanisms or structural scaffolds. Second, using data from the FBI's Combined DNA Index System (CODIS), we demonstrate that our approach is particularly well suited for the problem of discovering short tandem repeats, an application of importance in genetic profiling.Comment: Preliminary version. Final version in EURASIP Journal on Bioinformatics and Systems Biology. See http://www.hindawi.com/journals/bsb

    Information decomposition of symbolic sequences

    Full text link
    We developed a non-parametric method of Information Decomposition (ID) of a content of any symbolical sequence. The method is based on the calculation of Shannon mutual information between analyzed and artificial symbolical sequences, and allows the revealing of latent periodicity in any symbolical sequence. We show the stability of the ID method in the case of a large number of random letter changes in an analyzed symbolic sequence. We demonstrate the possibilities of the method, analyzing both poems, and DNA and protein sequences. In DNA and protein sequences we show the existence of many DNA and amino acid sequences with different types and lengths of latent periodicity. The possible origin of latent periodicity for different symbolical sequences is discussed.Comment: 18 pages, 8 figure

    Statistically Significant Strings are Related to Regulatory Elements in the Promoter Regions of Saccharomyces cerevisiae

    Get PDF
    Finding out statistically significant words in DNA and protein sequences forms the basis for many genetic studies. By applying the maximal entropy principle, we give one systematic way to study the nonrandom occurrence of words in DNA or protein sequences. Through comparison with experimental results, it was shown that patterns of regulatory binding sites in Saccharomyces cerevisiae(yeast) genomes tend to occur significantly in the promoter regions. We studied two correlated gene family of yeast. The method successfully extracts the binding sites varified by experiments in each family. Many putative regulatory sites in the upstream regions are proposed. The study also suggested that some regulatory sites are a ctive in both directions, while others show directional preference.Comment: 13 pages, 2 figures, 3 tables. To appear in Physica

    Universal power law behaviors in genomic sequences and evolutionary models

    Full text link
    We study the length distribution of a particular class of DNA sequences known as 5'UTR exons. These exons belong to the messanger RNA of protein coding genes, but they are not coding (they are located upstream of the coding portion of the mRNA) and are thus less constrained from an evolutionary point of view. We show that both in mouse and in human these exons show a very clean power law decay in their length distribution and suggest a simple evolutionary model which may explain this finding. We conjecture that this power law behaviour could indeed be a general feature of higher eukaryotes.Comment: 15 pages, 3 figure
    corecore