21,153 research outputs found

    Genetic diversity in Amburana (Amburana cearensis) accessions: hierarchical and optimization methods.

    Get PDF
    The evaluation of accessions in a germplasm bank is essential for determining the potential parents in conservation programs, especially for native trees. This study aimed to determine the genetic diversity among 68 Amburana cearensis genotypes from different locations in the state of Pernambuco, Brazil. Their genetic patterns were evaluated by Inter Simple Sequence Repeat (ISSR) molecular markers and genetic divergence was evaluated through multivariate analyses using different clustering methods. The optimization method used (Tocher) was in agreement with all the hierarchical models used, in which clustering of the genotypes occurred similarly, specifically for the accession BB116, which is an important genetic material to be preserved and studied. Among the various hierarchical methods applied, the Average Linkage method exhibited higher discrimination power, allowing identification of a larger number of divergent groups, thus implying wide genetic diversity among A. cearensis accessions

    Molecular characterization of pearl millet [Pennisetum glaucum (L.) R. Br] inbreds using microsatellite markers

    Get PDF
    Studies on genetic diversity in Pennisetum germplasm are the promising opportunities for the use of un-domesticated materials for improving pearl millet varieties. DNA based markers have now emerged as a potential genomic tool for estimation of genetic diversity among various cultivars and varietal identification. In present study, genetic diversity among 49 stay green inbreds of pearl millet was studied using simple sequence repeats (SSRs). Twenty nine polymorphic SSR primers, identified after initial screening of 70, were used to study diversity among these lines. A total of 108 alleles were amplified, collectively yielding unique SSR profiles for all the 49 inbreds. The average number of SSR alleles per locus was 3.72, with a range from 2 to 13. Polymorphic information content (PIC) values of various SSR loci across all the 49 inbreds ranged from 0.14 to 0.87 with an average of 0.51 per lo-cus. This indicated sufficient diversity among the 49 pearl millet inbreds and total 5 out of 29 polymorphic SSR loci, namely Xpsmp2070, Xpsmp2001, Xpsmp2008, Xpsmp2066, Xpsmp2072 revealed PIC values above 0.70, can be considered highly useful for differentiation of pearl millet inbred lines. The lowest PIC value (0.47) for linkage group 7 showed comparatively conserved nature of this linkage group A dendrogram obtained using WARD’s minimum variance method further delineates 49 inbreds into 8 major clusters, and the clustering pattern corroborated with their pedigree and characteristics traits

    Association mapping in tetraploid potato

    Get PDF
    The results of a four year project within the Centre for BioSystems Genomics (www.cbsg.nl), entitled “Association mapping and family genotyping in potato” are described in this thesis. This project was intended to investigate whether a recently emerged methodology, association mapping, could provide the means to improve potato breeding efficiency. In an attempt to answer this research question a set of potato cultivars representative for the commercial potato germplasm was selected. In total 240 cultivars and progenitor clones were chosen. In a later stage this set was expanded with 190 recent breeds contributed by five participating breeding companies which resulted in a total of 430 genotypes. In a pilot experiment, the results of which are reported in Chapter 2, a subset of 220 of the abovementioned 240 cultivars and progenitor clones was used. Phenotypic data was retrieved through contributions of the participating breeding companies and represented summary statistics of recent observations for a number of traits across years and locations, calculated following company specific procedures. With AFLP marker data, in the form of normalised log-transformed band intensities, obtained from five well-known primer combinations, the extent of linkage disequilibrium (LD), using the r2 statistic, was estimated. Population structure within the set of 220 cultivars was analysed by deploying a clustering approach. No apparent, nor statistically supported population structure was revealed and the LD seemed to decay below the threshold of 0.1 at a genetic distance of about 3cM with this set of marker data. Furthermore, marker-trait associations were investigated by fitting single marker regression models for phenotypic traits on marker band intensities with and without correction for population structure. Population structure correction was performed in a straightforward way by incorporating a design matrix into the model assuming that each breeding company represented a different breeding germplasm pool. The potential of association mapping in tetraploid potato has been demonstrated in this pilot experiment, because existing phenotypic data, a modest number of AFLP markers, and a relatively straightforward statistical analysis allowed identification of interesting associations for a number of agro-morphological and quality traits. These promising results encouraged us to engage into an encompassing genome-wide association mapping study in potato. Two association mapping panels were compiled. One panel comprising 205 genotypes, all of which were also present in the set used for the pilot experiment, and another panel containing in total 299 genotypes including the entire set of 190 recent breeds together with a series of standard cultivars, about 100 of which are in common with the first panel. Phenotypic data for the association panel with 205 genotypes were obtained in a field trial performed in 2006 in Wageningen at two locations with two replicates. We will refer to this set as the “2006 field trial”. Phenotypic data for the other panel with 299 genotypes was contributed by the five participating breeding companies and consisted of multi-year-multi-location data obtained during generations of clonal selection. The 2006 data were nicely balanced, because the trial was designed in that way. The historical breeding dataset was highly unbalanced. Analysis of these two differing phenotypic datasets was performed to deliver insight in variance components for the genotypic main effects and the genotype by environment interaction (GEI), besides estimated genotype main effects across environments. Both phenotypic datasets were analysed separately within a mixed model framework including terms for GEI. In Chapter 3 we describe both phenotypic datasets by comparing variance components, heritabilities (=repeatabilities), intra-dataset relationships and inter-dataset relationships. Broader aspects related to phenotypic datasets and their analysis are discussed as well. To retrieve information about hidden population structure and genetic relatedness, and to estimate the extent of LD in potato germplasm, we used marker information generated with 41 AFLP primer combinations and 53 microsatellite loci on a collection of 430 genotypes. These 430 genotypes contain all genotypes present in the two association mapping panels introduced before plus a few extra genotypes to increase potato germplasm coverage. Two methods were used: a Bayesian approach and a distance-based clustering approach. Chapter 4 describes the results of this exercise. Both strategies revealed a weak level of structure in our material. Groups were detected which complied with criteria such as their intended market segment, as well as groups differing in their year of first registration on a national list. Linkage disequilibrium, using the r2 statistic, appeared to decay below the threshold of 0.1 across linkage groups at a genetic distance of about 5cM on average. The results described in Chapter 4 are promising for association mapping research in potato. The odds are reasonable that useful marker-trait associations can be detected and that the potential mapping resolution will suffice for detection of QTL in an association mapping context. In Chapter 5 a comprehensive genome-wide association mapping study is presented. The adjusted genotypic means obtained from two association mapping panels as a result of phenotypic analysis performed in Chapter 3 were combined with marker information in two association mapping models. Marker information consisted of normalised log-transformed band intensities of 41 AFLP primer combinations and allele dosage information from 53 microsatellites. A baseline model without correction for population structure and a more advanced model with correction for population structure and genetic relatedness were applied. Population structure and genetic relatedness were estimated using available marker information. Interesting QTL could be identified for 19 agro-morphological and quality traits. The observed QTL partly confirm previous studies e.g. for tuber shape and frying colour, but also new QTL have been detected e.g. for after baking darkening and enzymatic browning. In the final chapter, the general discussion, results of preceding chapters are evaluated and their implications for research as well as breeding are discussed. <br/

    Gene expression in large pedigrees: analytic approaches.

    Get PDF
    BackgroundWe currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide, using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and important problems and questions. To study the complexity and interrelationships of genetics and gene expression, we used established statistical tools, developed newer statistical tools, and developed and applied extensions to these tools.MethodsTo study gene expression correlations in the pedigree members (without incorporating genotype or trait data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis, meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels. To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple regression.Results and discussionRegarding the analysis of pedigree data, we found that gene expression is familial, indicating that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines -Major Gene Analysis) have similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex, exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with measurements of gene expression was found to be generally advantageous in terms of generating improved levels of significance and in providing more interpretable biological models.ConclusionsPedigrees can be used to conduct analyses of and enhance gene expression studies

    High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Full text link
    We implement a master-slave parallel genetic algorithm (PGA) with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement a PGA and visualise the results using disjoint minimal spanning trees (MSTs). We demonstrate that our GPU PGA, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable due to compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.Comment: 10 pages, 5 figures, 4 tables, More thorough discussion of implementatio

    Hierarchical information clustering by means of topologically embedded graphs

    Get PDF
    We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.Comment: 33 Pages, 18 Figures, 5 Table
    corecore