46,543 research outputs found

    Modular forms, Schwarzian conditions, and symmetries of differential equations in physics

    Full text link
    We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same 2F1_2F_1 hypergeometric function with different rational pullbacks. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus 2F1_2F_1 hypergeometric function example. We then focus on identities relating the same hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that emerged in a paper by Casale. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to 3F2_3F_2, hypergeometric functions, and show that one just reduces to the previous 2F1_2F_1 cases through a Clausen identity. In a 2F1_2F_1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or 2F1_2F_1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.Comment: 43 page

    Exactly Solvable Quantum Mechanics

    Full text link
    A comprehensive review of exactly solvable quantum mechanics is presented with the emphasis of the recently discovered multi-indexed orthogonal polynomials. The main subjects to be discussed are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modifications), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, coherent states, various deformation schemes (multiple Darboux transformations) and the infinite families of multi-indexed orthogonal polynomials, the exceptional orthogonal polynomials, and deformed exactly solvable scattering problems.Comment: LaTeX 48 pages, 5 figures. arXiv admin note: text overlap with arXiv:1104.047

    New Fundamental Symmetries of Integrable Systems and Partial Bethe Ansatz

    Get PDF
    We introduce a new concept of quasi-Yang-Baxter algebras. The quantum quasi-Yang-Baxter algebras being simple but non-trivial deformations of ordinary algebras of monodromy matrices realize a new type of quantum dynamical symmetries and find an unexpected and remarkable applications in quantum inverse scattering method (QISM). We show that applying to quasi-Yang-Baxter algebras the standard procedure of QISM one obtains new wide classes of quantum models which, being integrable (i.e. having enough number of commuting integrals of motion) are only quasi-exactly solvable (i.e. admit an algebraic Bethe ansatz solution for arbitrarily large but limited parts of the spectrum). These quasi-exactly solvable models naturally arise as deformations of known exactly solvable ones. A general theory of such deformations is proposed. The correspondence ``Yangian --- quasi-Yangian'' and ``XXXXXX spin models --- quasi-XXXXXX spin models'' is discussed in detail. We also construct the classical conterparts of quasi-Yang-Baxter algebras and show that they naturally lead to new classes of classical integrable models. We conjecture that these models are quasi-exactly solvable in the sense of classical inverse scattering method, i.e. admit only partial construction of action-angle variables.Comment: 49 pages, LaTe

    Free nilpotent and HH-type Lie algebras. Combinatorial and orthogonal designs

    Full text link
    The aim of our paper is to construct pseudo HH-type algebras from the covering free nilpotent two-step Lie algebra as the quotient algebra by an ideal. We propose an explicit algorithm of construction of such an ideal by making use of a non-degenerate scalar product. Moreover, as a bypass result, we recover the existence of a rational structure on pseudo HH-type algebras, which implies the existence of lattices on the corresponding pseudo HH-type Lie groups. Our approach substantially uses combinatorics and reveals the interplay of pseudo HH-type algebras with combinatorial and orthogonal designs. One of the key tools is the family of Hurwitz-Radon orthogonal matrices

    Denominator Bounds and Polynomial Solutions for Systems of q-Recurrences over K(t) for Constant K

    Full text link
    We consider systems A_\ell(t) y(q^\ell t) + ... + A_0(t) y(t) = b(t) of higher order q-recurrence equations with rational coefficients. We extend a method for finding a bound on the maximal power of t in the denominator of arbitrary rational solutions y(t) as well as a method for bounding the degree of polynomial solutions from the scalar case to the systems case. The approach is direct and does not rely on uncoupling or reduction to a first order system. Unlike in the scalar case this usually requires an initial transformation of the system.Comment: 8 page
    corecore