16,581 research outputs found

    National Security Space Launch

    Get PDF
    The United States Space Force’s National Security Space Launch (NSSL) program, formerly known as the Evolved Expendable Launch Vehicle (EELV) program, was first established in 1994 by President William J. Clinton’s National Space Transportation Policy. The policy assigned the responsibility for expendable launch vehicles to the Department of Defense (DoD), with the goals of lowering launch costs and ensuring national security access to space. As such, the United States Air Force Space and Missile Systems Center (SMC) started the EELV program to acquire more affordable and reliable launch capability for valuable U.S. military satellites, such as national reconnaissance satellites that cost billions per satellite. In March 2019, the program name was changed from EELV to NSSL, which reflected several important features: 1.) The emphasis on “assured access to space,” 2.) transition from the Russian-made RD-180 rocket engine used on the Atlas V to a US-sourced engine (now scheduled to be complete by 2022), 3.) adaptation to manifest changes (such as enabling satellite swaps and return of manifest to normal operations both within 12 months of a need or an anomaly), and 4.) potential use of reusable launch vehicles. As of August 2019, Blue Origin, Northrop Grumman Innovation Systems, SpaceX, and United Launch Alliance (ULA) have all submitted proposals. From these, the U.S. Air Force will be selecting two companies to fulfill approximately 34 launches over a period of five years, beginning in 2022. This paper will therefore first examine the objectives for the NSSL as presented in the 2017 National Security Strategy, Fiscal Year 2019, Fiscal Year 2020, and Fiscal Year 2021 National Defense Authorization Acts (NDAA), and National Presidential Directive No. 40. The paper will then identify areas of potential weakness and gaps that exist in space launch programs as a whole and explore the security implications that impact the NSSL specifically. Finally, the paper will examine how the trajectory of the NSSL program could be adjusted in order to facilitate a smooth transition into new launch vehicles, while maintaining mission success, minimizing national security vulnerabilities, and clarifying the defense acquisition process.No embargoAcademic Major: EnglishAcademic Major: International Studie

    CONCEPT EVALUATION AND DEVELOPMENT OF A NOVEL APPROACH FOR INTEGRATION OF TURBOGENERATION, ELECTRIFICATION AND SUPERCHARGING ON HEAVY DUTY ENGINES

    Get PDF
    While many technologies such as electrically assisted turbocharging, exhaust energy recovery and mild hybridization have already proven to significantly increase heavy-duty engine efficiency, the key challenge to their widespread adoption has been their cost effectiveness and packaging. This research specifically addresses these challenges through evaluation and development of a novel technology concept termed as the Integrated Turbogeneration, Electrification and Supercharging (ITES) system. The concept integrates a secondary compressor, a turbocompound/expander turbine and an electric motor through a planetary gearset into the engine cranktrain. The approach enables a reduced system cost and space-claim, while maximizing the efficiency benefits of independent technologies. First, an assessment of design alternatives for integration of the identified key engine technologies on a heavy-duty engine was conducted. Once the ITES concept was down selected, the research then focused on model-based optimization and evaluation of the ITES system for a downsized medium heavy-duty diesel engine applied in Class 6-7 urban vocational application. As an outcome of the evaluation, a 1D simulation based sizing methodology of ITES system components was proposed. Furthermore, a novel control strategy for the ITES system was developed that combines equivalent consumption based steady-state offline optimization with functional controls for transient operation and smooth mode switching. The offline optimization method was also extended to evaluate the potential of ITES system in increasing aftertreatment temperature, which is critical for meeting future ultra-low NOx emission standards. Lastly, using 1D simulation of validated models, the efficiency benefit of ITES system on engine certification and vehicle drive cycles was predicted for the Class 6-7 urban vocational application. In comparison to baseline engine, the downsized engine with ITES system predicted an 8.5% reduction in engine fuel consumption on HDFTP cycle, 19.3% increase in fuel economy on ARB Transient cycle and 23.7% increase in fuel economy on a real-world drive cycle
    • …
    corecore