5,299 research outputs found

    Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks

    Get PDF
    Deep neural networks are vulnerable to adversarial attacks, which can fool them by adding minuscule perturbations to the input images. The robustness of existing defenses suffers greatly under white-box attack settings, where an adversary has full knowledge about the network and can iterate several times to find strong perturbations. We observe that the main reason for the existence of such perturbations is the close proximity of different class samples in the learned feature space. This allows model decisions to be totally changed by adding an imperceptible perturbation in the inputs. To counter this, we propose to class-wise disentangle the intermediate feature representations of deep networks. Specifically, we force the features for each class to lie inside a convex polytope that is maximally separated from the polytopes of other classes. In this manner, the network is forced to learn distinct and distant decision regions for each class. We observe that this simple constraint on the features greatly enhances the robustness of learned models, even against the strongest white-box attacks, without degrading the classification performance on clean images. We report extensive evaluations in both black-box and white-box attack scenarios and show significant gains in comparison to state-of-the art defenses.Comment: Accepted at ICCV 201

    Decision-BADGE: Decision-based Adversarial Batch Attack with Directional Gradient Estimation

    Full text link
    The susceptibility of deep neural networks (DNNs) to adversarial examples has prompted an increase in the deployment of adversarial attacks. Image-agnostic universal adversarial perturbations (UAPs) are much more threatening, but many limitations exist to implementing UAPs in real-world scenarios where only binary decisions are returned. In this research, we propose Decision-BADGE, a novel method to craft universal adversarial perturbations for executing decision-based black-box attacks. To optimize perturbation with decisions, we addressed two challenges, namely the magnitude and the direction of the gradient. First, we use batch loss, differences from distributions of ground truth, and accumulating decisions in batches to determine the magnitude of the gradient. This magnitude is applied in the direction of the revised simultaneous perturbation stochastic approximation (SPSA) to update the perturbation. This simple yet efficient method can be easily extended to score-based attacks as well as targeted attacks. Experimental validation across multiple victim models demonstrates that the Decision-BADGE outperforms existing attack methods, even image-specific and score-based attacks. In particular, our proposed method shows a superior success rate with less training time. The research also shows that Decision-BADGE can successfully deceive unseen victim models and accurately target specific classes.Comment: 9 pages (7 pages except for references), 4 figures, 4 table
    • …
    corecore