1,440 research outputs found

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Intelligent interface agents for biometric applications

    Get PDF
    This thesis investigates the benefits of applying the intelligent agent paradigm to biometric identity verification systems. Multimodal biometric systems, despite their additional complexity, hold the promise of providing a higher degree of accuracy and robustness. Multimodal biometric systems are examined in this work leading to the design and implementation of a novel distributed multi-modal identity verification system based on an intelligent agent framework. User interface design issues are also important in the domain of biometric systems and present an exceptional opportunity for employing adaptive interface agents. Through the use of such interface agents, system performance may be improved, leading to an increase in recognition rates over a non-adaptive system while producing a more robust and agreeable user experience. The investigation of such adaptive systems has been a focus of the work reported in this thesis. The research presented in this thesis is divided into two main parts. Firstly, the design, development and testing of a novel distributed multi-modal authentication system employing intelligent agents is presented. The second part details design and implementation of an adaptive interface layer based on interface agent technology and demonstrates its integration with a commercial fingerprint recognition system. The performance of these systems is then evaluated using databases of biometric samples gathered during the research. The results obtained from the experimental evaluation of the multi-modal system demonstrated a clear improvement in the accuracy of the system compared to a unimodal biometric approach. The adoption of the intelligent agent architecture at the interface level resulted in a system where false reject rates were reduced when compared to a system that did not employ an intelligent interface. The results obtained from both systems clearly express the benefits of combining an intelligent agent framework with a biometric system to provide a more robust and flexible application

    Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

    Get PDF
    The availability of third-party apps is among the key success factors for software ecosystems: The users benefit from more features and innovation speed, while third-party solution vendors can leverage the platform to create successful offerings. However, this requires a certain decoupling of engineering activities of the different parties not achieved for distributed control systems, yet. While late and dynamic integration of third-party components would be required, resulting control systems must provide high reliability regarding real-time requirements, which leads to integration complexity. Closing this gap would particularly contribute to the vision of software-defined manufacturing, where an ecosystem of modern IT-based control system components could lead to faster innovations due to their higher abstraction and availability of various frameworks. Therefore, this thesis addresses the research question: How we can use modern IT technologies and enable independent evolution and easy third-party integration of software components in distributed control systems, where deterministic end-to-end reactivity is required, and especially, how can we apply distributed changes to such systems consistently and reactively during operation? This thesis describes the challenges and related approaches in detail and points out that existing approaches do not fully address our research question. To tackle this gap, a formal specification of a runtime platform concept is presented in conjunction with a model-based engineering approach. The engineering approach decouples the engineering steps of component definition, integration, and deployment. The runtime platform supports this approach by isolating the components, while still offering predictable end-to-end real-time behavior. Independent evolution of software components is supported through a concept for synchronous reconfiguration during full operation, i.e., dynamic orchestration of components. Time-critical state transfer is supported, too, and can lead to bounded quality degradation, at most. The reconfiguration planning is supported by analysis concepts, including simulation of a formally specified system and reconfiguration, and analyzing potential quality degradation with the evolving dataflow graph (EDFG) method. A platform-specific realization of the concepts, the real-time container architecture, is described as a reference implementation. The model and the prototype are evaluated regarding their feasibility and applicability of the concepts by two case studies. The first case study is a minimalistic distributed control system used in different setups with different component variants and reconfiguration plans to compare the model and the prototype and to gather runtime statistics. The second case study is a smart factory showcase system with more challenging application components and interface technologies. The conclusion is that the concepts are feasible and applicable, even though the concepts and the prototype still need to be worked on in future -- for example, to reach shorter cycle times.Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Innovationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbieten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht wurde. Während Drittanbieter-Komponenten möglichst spät -- sogar Laufzeit -- integriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässigkeit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Produktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponenten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frameworks zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden und unabhängige Entwicklung und einfache Integration von Software-Komponenten in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen Systemen konsistent und im Vollbetrieb vornehmen? Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig behandeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikation einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integration und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dynamische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurationsplanung wird durch Analysekonzepte unterstützt, einschließlich der Simulation formal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Container Architecture wird als Referenzimplementierung und Evaluationsplattform beschrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Konzepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu vergleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach machbar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch weitere Arbeit benötigen -- zum Beispiel, um kürzere Zyklen zu erreichen

    Towards a human-centric data economy

    Get PDF
    Spurred by widespread adoption of artificial intelligence and machine learning, “data” is becoming a key production factor, comparable in importance to capital, land, or labour in an increasingly digital economy. In spite of an ever-growing demand for third-party data in the B2B market, firms are generally reluctant to share their information. This is due to the unique characteristics of “data” as an economic good (a freely replicable, non-depletable asset holding a highly combinatorial and context-specific value), which moves digital companies to hoard and protect their “valuable” data assets, and to integrate across the whole value chain seeking to monopolise the provision of innovative services built upon them. As a result, most of those valuable assets still remain unexploited in corporate silos nowadays. This situation is shaping the so-called data economy around a number of champions, and it is hampering the benefits of a global data exchange on a large scale. Some analysts have estimated the potential value of the data economy in US$2.5 trillion globally by 2025. Not surprisingly, unlocking the value of data has become a central policy of the European Union, which also estimated the size of the data economy in 827C billion for the EU27 in the same period. Within the scope of the European Data Strategy, the European Commission is also steering relevant initiatives aimed to identify relevant cross-industry use cases involving different verticals, and to enable sovereign data exchanges to realise them. Among individuals, the massive collection and exploitation of personal data by digital firms in exchange of services, often with little or no consent, has raised a general concern about privacy and data protection. Apart from spurring recent legislative developments in this direction, this concern has raised some voices warning against the unsustainability of the existing digital economics (few digital champions, potential negative impact on employment, growing inequality), some of which propose that people are paid for their data in a sort of worldwide data labour market as a potential solution to this dilemma [114, 115, 155]. From a technical perspective, we are far from having the required technology and algorithms that will enable such a human-centric data economy. Even its scope is still blurry, and the question about the value of data, at least, controversial. Research works from different disciplines have studied the data value chain, different approaches to the value of data, how to price data assets, and novel data marketplace designs. At the same time, complex legal and ethical issues with respect to the data economy have risen around privacy, data protection, and ethical AI practices. In this dissertation, we start by exploring the data value chain and how entities trade data assets over the Internet. We carry out what is, to the best of our understanding, the most thorough survey of commercial data marketplaces. In this work, we have catalogued and characterised ten different business models, including those of personal information management systems, companies born in the wake of recent data protection regulations and aiming at empowering end users to take control of their data. We have also identified the challenges faced by different types of entities, and what kind of solutions and technology they are using to provide their services. Then we present a first of its kind measurement study that sheds light on the prices of data in the market using a novel methodology. We study how ten commercial data marketplaces categorise and classify data assets, and which categories of data command higher prices. We also develop classifiers for comparing data products across different marketplaces, and we study the characteristics of the most valuable data assets and the features that specific vendors use to set the price of their data products. Based on this information and adding data products offered by other 33 data providers, we develop a regression analysis for revealing features that correlate with prices of data products. As a result, we also implement the basic building blocks of a novel data pricing tool capable of providing a hint of the market price of a new data product using as inputs just its metadata. This tool would provide more transparency on the prices of data products in the market, which will help in pricing data assets and in avoiding the inherent price fluctuation of nascent markets. Next we turn to topics related to data marketplace design. Particularly, we study how buyers can select and purchase suitable data for their tasks without requiring a priori access to such data in order to make a purchase decision, and how marketplaces can distribute payoffs for a data transaction combining data of different sources among the corresponding providers, be they individuals or firms. The difficulty of both problems is further exacerbated in a human-centric data economy where buyers have to choose among data of thousands of individuals, and where marketplaces have to distribute payoffs to thousands of people contributing personal data to a specific transaction. Regarding the selection process, we compare different purchase strategies depending on the level of information available to data buyers at the time of making decisions. A first methodological contribution of our work is proposing a data evaluation stage prior to datasets being selected and purchased by buyers in a marketplace. We show that buyers can significantly improve the performance of the purchasing process just by being provided with a measurement of the performance of their models when trained by the marketplace with individual eligible datasets. We design purchase strategies that exploit such functionality and we call the resulting algorithm Try Before You Buy, and our work demonstrates over synthetic and real datasets that it can lead to near-optimal data purchasing with only O(N) instead of the exponential execution time - O(2N) - needed to calculate the optimal purchase. With regards to the payoff distribution problem, we focus on computing the relative value of spatio-temporal datasets combined in marketplaces for predicting transportation demand and travel time in metropolitan areas. Using large datasets of taxi rides from Chicago, Porto and New York we show that the value of data is different for each individual, and cannot be approximated by its volume. Our results reveal that even more complex approaches based on the “leave-one-out” value, are inaccurate. Instead, more complex and acknowledged notions of value from economics and game theory, such as the Shapley value, need to be employed if one wishes to capture the complex effects of mixing different datasets on the accuracy of forecasting algorithms. However, the Shapley value entails serious computational challenges. Its exact calculation requires repetitively training and evaluating every combination of data sources and hence O(N!) or O(2N) computational time, which is unfeasible for complex models or thousands of individuals. Moreover, our work paves the way to new methods of measuring the value of spatio-temporal data. We identify heuristics such as entropy or similarity to the average that show a significant correlation with the Shapley value and therefore can be used to overcome the significant computational challenges posed by Shapley approximation algorithms in this specific context. We conclude with a number of open issues and propose further research directions that leverage the contributions and findings of this dissertation. These include monitoring data transactions to better measure data markets, and complementing market data with actual transaction prices to build a more accurate data pricing tool. A human-centric data economy would also require that the contributions of thousands of individuals to machine learning tasks are calculated daily. For that to be feasible, we need to further optimise the efficiency of data purchasing and payoff calculation processes in data marketplaces. In that direction, we also point to some alternatives to repetitively training and evaluating a model to select data based on Try Before You Buy and approximate the Shapley value. Finally, we discuss the challenges and potential technologies that help with building a federation of standardised data marketplaces. The data economy will develop fast in the upcoming years, and researchers from different disciplines will work together to unlock the value of data and make the most out of it. Maybe the proposal of getting paid for our data and our contribution to the data economy finally flies, or maybe it is other proposals such as the robot tax that are finally used to balance the power between individuals and tech firms in the digital economy. Still, we hope our work sheds light on the value of data, and contributes to making the price of data more transparent and, eventually, to moving towards a human-centric data economy.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Georgios Smaragdakis.- Secretario: Ángel Cuevas Rumín.- Vocal: Pablo Rodríguez Rodrígue

    Procedural Constraint-based Generation for Game Development

    Get PDF

    Identifikation von Beinahekollisionen in maritimen Verkehrsdaten als Ground-Truth für szenariobasiertes Testen

    Get PDF
    Diese Arbeit geht der Frage nach, wie sich validierungsrelevante Beinahekollisionssituationen aus historischen Verkehrsdaten detektieren und als Ground Truth nutzen lassen. Nach der Sichtung des Stands der Technik werden Anforderungen an die Datenerhebung, Datenspeicherung, sowie die Datenanalyse erhoben und ein entsprechendes Konzept erstellt. Zur Bestimmung von Beinahekollisionen werden zunächst die relevanten Einflussfaktoren hergeleitet und es folgt, gemäß der Definition, die Entwicklung mehrerer Methoden und Werkzeuge zur Identifikation von fahrerreaktionsbasierten, funktionsreaktionsbasierten, kontextbasierten und historienbasierten Auffälligkeiten. Als Vorbereitung auf die Evaluation schließt sich die Implementierung und Integration der Systemartefakte in das maritime Testfeld eMIR an. Es kann gezeigt werden, dass der Ansatz zur objektiven Erkennung von Beinahekollisionen geeignet ist und als Ground Truth für das szenariobasierte Testen eingesetzt werden kann

    Deep language models for software testing and optimisation

    Get PDF
    Developing software is difficult. A challenging part of production development is ensuring programs are correct and fast, two properties satisfied with software testing and optimisation. While both tasks still rely on manual effort and expertise, the recent surge in software applications has led them to become tedious and time-consuming. Under this fast-pace environment, manual testing and optimisation hinders productivity significantly and leads to error-prone or sub-optimal programs that waste energy and lead users to frustration. In this thesis, we propose three novel approaches to automate software testing and optimisation with modern language models based on deep learning. In contrast to our methods, existing few techniques in these two domains have limited scalability and struggle when they face real-world applications. Our first contribution lies in the field of software testing and aims to automate the test oracle problem, which is the procedure of determining the correctness of test executions. The test oracle is still largely manual, relying on human experts. Automating the oracle is a non-trivial task that requires software specifications or derived information that are often too difficult to extract. We present the first application of deep language models over program execution traces to predict runtime correctness. Our technique classifies test executions of large-scale codebases used in production as “pass” or “fail”. Our proposed approach reduces by 86% the amount of test inputs an expert has to label by training only on 14% and classifying the rest automatically. Our next two contributions improve the effectiveness of compiler optimisation. Compilers optimise programs by applying heuristic-based transformations constructed by compiler engineers. Selecting the right transformations requires extensive knowledge of the compiler, the subject program and the target architecture. Predictive models have been successfully used to automate heuristics construction but their performance is hindered by a shortage of training benchmarks in quantity and feature diversity. Our next contributions address the scarcity of compiler benchmarks by generating human-likely synthetic programs to improve the performance of predictive models. Our second contribution is BENCHPRESS, the first steerable deep learning synthesizer for executable compiler benchmarks. BENCHPRESS produces human-like programs that compile at a rate of 87%. It targets parts of the feature space previously unreachable by other synthesizers, addressing the scarcity of high-quality training data for compilers. BENCHPRESS improves the performance of a device mapping predictive model by 50% when it introduces synthetic benchmarks into its training data. BENCHPRESS is restricted by a feature-agnostic synthesizer that requires thou sands of random inferences to select a few that target the desired features. Our third contribution addresses this inefficiency. We develop BENCHDIRECT, a directed language model for compiler benchmark generation. BENCHDIRECT synthesizes programs by jointly observing the source code context and the compiler features that are targeted. This enables efficient steerable generation on large scale tasks. Compared to BENCHPRESS, BENCHDIRECT matches successfully 1.8× more Rodinia target benchmarks, while it is up to 36% more accurate and up to 72% faster in targeting three different feature spaces for compilers. All three contributions demonstrate the exciting potential of deep learning and language models to simplify the testing of programs and the construction of better optimi sation heuristics for compilers. The outcomes of this thesis provides developers with tools to keep up with the rapidly evolving landscape of software engineering

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours
    corecore