1,466 research outputs found

    Simple, Interpretable and Stable Method for Detecting Words with Usage Change across Corpora

    Get PDF
    International audienceThe problem of comparing two bodies of text and searching for words that differ in their usage between them arises often in digital humanities and computational social science. This is commonly approached by training word embeddings on each corpus, aligning the vector spaces, and looking for words whose cosine distance in the aligned space is large. However, these methods often require extensive filtering of the vocabulary to perform well, and-as we show in this work-result in unstable, and hence less reliable, results. We propose an alternative approach that does not use vector space alignment, and instead considers the neighbors of each word. The method is simple, interpretable and stable. We demonstrate its effectiveness in 9 different setups, considering different corpus splitting criteria (age, gender and profession of tweet authors, time of tweet) and different languages (English, French and Hebrew)

    Computational modeling of semantic change

    Full text link
    In this chapter we provide an overview of computational modeling for semantic change using large and semi-large textual corpora. We aim to provide a key for the interpretation of relevant methods and evaluation techniques, and also provide insights into important aspects of the computational study of semantic change. We discuss the pros and cons of different classes of models with respect to the properties of the data from which one wishes to model semantic change, and which avenues are available to evaluate the results.Comment: This chapter is submitted to Routledge Handbook of Historical Linguistics, 2nd Editio

    Neural models of language use:Studies of language comprehension and production in context

    Get PDF
    Artificial neural network models of language are mostly known and appreciated today for providing a backbone for formidable AI technologies. This thesis takes a different perspective. Through a series of studies on language comprehension and production, it investigates whether artificial neural networks—beyond being useful in countless AI applications—can serve as accurate computational simulations of human language use, and thus as a new core methodology for the language sciences

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Do Not Fire the Linguist : Grammatical Profiles Help Language Models Detect Semantic Change

    Get PDF
    Morphological and syntactic changes in word usage-as captured, e.g., by grammatical profiles-have been shown to be good predictors of a word's meaning change. In this work, we explore whether large pre-trained contextualised language models, a common tool for lexical semantic change detection, are sensitive to such morphosyntactic changes. To this end, we first compare the performance of grammatical profiles against that of a multilingual neural language model (XLM-R) on 10 datasets, covering 7 languages, and then combine the two approaches in ensembles to assess their complementarity. Our results show that ensembling grammatical profiles with XLM-R improves semantic change detection performance for most datasets and languages. This indicates that language models do not fully cover the fine-grained morphological and syntactic signals that are explicitly represented in grammatical profiles. An interesting exception are the test sets where the time spans under analysis are much longer than the time gap between them (for example, century-long spans with a one-year gap between them). Morphosyntactic change is slow so grammatical profiles do not detect in such cases. In contrast, language models, thanks to their access to lexical information, are able to detect fast topical changes.Peer reviewe

    DIACR-Ita @ EVALITA2020: Overview of the EVALITA2020 diachronic lexical semantics (DIACR-Ita) task

    Get PDF
    This paper describes the first edition of the “Diachronic Lexical Semantics” (DIACR-Ita) task at the EVALITA 2020 campaign. The task challenges participants to develop systems that can automatically detect if a given word has changed its meaning over time, given contextual information from corpora. The task, at its first edition, attracted 9 participant teams and collected a total of 36 submission runs
    • …
    corecore