99 research outputs found

    Développement de nouveaux outils analytiques à base d'acides nucléiques aptamères pour la détection de petites molécules

    Get PDF
    La détection de petites molécules est d'un grand intérêt dans les domaines pharmaceutique, environnemental, alimentaire et de la biologie clinique. Les aptamères, sélectionnés par la méthode SELEX (pour Systematic Evolution of Ligands by Exponential Enrichment), sont des oligonucléotides qui se lient à une cible donnée avec une affinité et une spécificité importantes. L'objectif de ce travail est d'établir de nouvelles méthodologies analytiques basées sur l'utilisation des aptamères pour la détection de petites molécules. Dans un premier temps, une méthodologie par électrophorèse capillaire, dérivée du concept de déplacement du brin complémentaire de l'aptamère, est décrite pour la détection simultanée de plusieurs analytes dans un seul capillaire. La deuxième étude se focalise sur le développement d'un aptacapteur colorimétrique simple, rapide et peu coûteux, qui utilise le concept général de protection enzymatique de l'aptamère et les nanoparticules d'or en tant que système de transduction. Enfin, deux méthodes par polarisation de fluorescence, basées sur le concept de déplacement (du brin complémentaire ou de l'aptamère lui-même), sont présentées afin d'accroitre les potentialités des aptacapteurs dédiés à la détection des petites molécules.Small biomolecule detection is of great interest and importance in the pharmaceutical, environmental, food and clinical fields. Aptamers, selected by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), are oligonucleotides that bind to a target with high affinity and specificity. The objective of the work is to establish novel methodologies of aptamer-based assays for the small biomolecule detection. In the first work, a rationalized capillary electrophoresis strategy, derived from the structure-switching aptamer concept, is described for the design of simultaneous detection of multiple analytes. The second work based on a gold nanoparticle colorimetric sensing strategy allows a rapid, label-free, homogeneous assay for small molecule using an aptamer enzymatic cleavage protection strategy. In the third work, two aptamer-based fluorescence polarization approaches, using the displacement concept, are described to improve the potentialities of the small molecule-dedicated aptasensors.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Gold Nanoparticle-Based Colorimetric Sensors for Detection of DNA and Small Molecules

    Get PDF
    Biosensors have proven to be a powerful tool for detecting diverse targets, such as proteins, DNA, and small molecules representing disease biomarkers, toxins, drugs and their metabolites, environmental pollutants, agrichemicals, and antibiotics with high sensitivity and specificity. The major objective of the research described in this dissertation was to develop low cost, low sample volume, highly sensitive and specific AuNP-based colorimetric sensor platforms for the detection of DNA and small molecules. With this in mind, we propose an instrument-free approach in chapter three for the detection of NADH with a sensor constructed on a paper substrate, based on the target-induced inhibition of AuNP dissolution. The successful detection of this important molecule opens the door to numerous possibilities for dehydrogenase characterization, because NAD+/NADH are essential cofactors for more than 300 dehydrogenase enzymes. To further increase the sensitivity of our hybridization-based assay for DNA detection, we developed an enzyme-assisted target recycling (EATR) strategy in chapter four and have applied such an EATR-based colorimetric assay to detect single-nucleotide mismatches in a target DNA with DNA-functionalized AuNPs. This assay is based on the principle that nuclease enzymes recognize probe–target complexes, cleaving only the probe strand. This results in target release, enabling subsequent binding to and cleavage of another probe molecule. When the probe is conjugated onto AuNPs, complete cleavage from the AuNP surface produces a detectable signal in high ionic strength environments as the nanoparticles undergo aggregation. With such enzyme-assisted amplification, target detection can occur with a very low nM detection limit within 15 minutes. The extent of DNA loading on the AuNP surface plays an important role in the efficiency of DNA hybridization and aptamer-target assembly. Many studies have shown that high surface-coverage is associated with steric hindrance, electrostatic repulsive interactions and elevated surface salt concentration, whereas low surface-coverage can result in nonspecific binding of oligonucleotides to the particle surface. In chapter five, we investigated DNA surface coverage effects, and apply this optimization in conjunction with a highly-specific aptamer to develop a sensitive colorimetric sensor for rapid cocaine detection based on the inhibition of nuclease enzyme activity

    Polypeptide functionalized gold nanoparticles for bioanalytical applications

    Full text link

    Supramolecular Luminescent Sensors

    Get PDF
    There is great need for stand-alone luminescence-based chemosensors that exemplify selectivity, sensitivity, and applicability and that overcome the challenges that arise from complex, real-world media. Discussed herein are recent developments toward these goals in the field of supramolecular luminescent chemosensors, including macrocycles, polymers, and nanomaterials. Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores. State-of-the-art developments in the fields of polymer and nanomaterial sensors are also examined, and some remaining unsolved challenges in the area of chemosensors are discussed

    Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids

    Get PDF
    Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host–guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems

    Development of nanocatalytic-based assay for the detection of an endocrine disrupting compound in aqueous solution

    Get PDF
    Endocrine disrupting compound (EDC) pollutants raise a concern among researchers as these pollutants are implicated in the increasing incidence of testicular, breast and thyroid cancers. Some of these chemicals are widely used for plastics production and discharged into the water system as industrial effluents that could harm the ecosystem as well as plant, animal and human life. Thus, rapid detection and quantification of EDCs in water is desired for screening and investigative purposes. For this purpose, nanoparticle-based methods appear to be potentially efficient, quick and cost-effective techniques to rapidly assess this toxic pollutant. The main focus of this study was to synthesize heterogeneous nanoparticles, iron oxide/gold nanoparticles (IONPs/AuNPs) and to manipulate their synergistic effects for the development of a nanoparticles-based assay, specifically for the EDC compound, 17β-estradiol. As the first step, IONPs and AuNPs were synthesized separately and heterogeneous nanoparticles were formed by a simple electrostatic- self- assembly technique. The unique physiochemical properties of this hybrid nanoparticle were investigated as a supporting material for biomolecules, as well for its intrinsic peroxidase-like activity using a hydrogen peroxidase dependent system. The formation of the IONPs/AuNPs was verified using several characterization tools such as UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) and X-ray Photoelectron Spectroscopy (XPS). The diameter calculated from TEM was 16.1 ± 11.1 nm and EDX confirmed the presence of the Fe and Au elements. From a heterostructural analysis using HRTEM and XPS data, an alloy-like morphology (Fe/Au) was suggested for the heterogeneous nanoparticles, rather than a core-shell structure. The Fe/Au nanoparticles showed good potential for the basis of a colorimetric assay for glucose detection using glucose oxidase immobilized on the Fe/Au surface. In addition, the Fe/Au nanoparticles also showed a significant peroxidase-like activity. A nanocatalytic-based assay was developed by modifying the nanoparticles surface with an aptamer in order to specifically “capture” the target molecule, 17β-estradiol. The formation of a Fe/Au-17β-estradiol complex significantly hampered the peroxidase-like catalytic activity resulting in the development of a unique nanosensor system based on the extent of loss of peroxidase activity. Development of the nanocatalytic-based assay suggests the potential application of Fe/Au nanoparticles to capture, separate and detect a selective target as well as a basis for the development of a rapid, simple and reliable detection tool. The heterogeneous Fe/Au nanoparticles show a remarkable synergistic property for application in nanosensor system. Therefore, some of the work presented here can be extended in certain major directions such as heterostructure formation and optimization of nanocatalytic-based assay

    Neurotransmitters recognition based on gold nanoparticles and mesoporous silica nanoparticles for sensing and controlled release applications

    Full text link
    [ES] La presente tesis doctoral titulada "Reconocimiento de neurotransmisores basado en nanopartículas de oro y de sílice mesoporosa para aplicaciones de detección y liberación controlada" es una tesis realizada por compendio de artículos la cual se centra en el diseño, preparación, caracterización y evaluación de distintos nanodispositivos para la detección colorimétrica de neurotransmisores y sistemas de liberación controlada que responden a neurotransmisores basados en nanopartículas de oro y nanopartículas de sílice mesoporosa, equipadas con ligandos orgánicos, efectores enzimáticos, puertas moleculares y especies cromofluorogénicas o medicamentos. En el primer capítulo se introduce una visión general de lo que son los neurotransmisores, sus principales características y el importante papel que éstos desempeñan en el funcionamiento de nuestro organismo. Además, se presenta una descripción general de las propiedades y potenciales aplicaciones de las nanopartículas de oro funcionalizadas con ligandos orgánicos como sistemas de detección y las nanopartículas mesoporosas de sílice funcionalizadas con puertas moleculares como sistemas de liberación controlada. A continuación, en el segundo capítulo se presentan los objetivos generales que son abordados en los siguientes capítulos experimentales. En el tercer capítulo, se presentan tres sistemas de detección colorimétrica de neurotransmisores basados en la agregación de nanopartículas de oro doblemente funcionalizadas con ligandos orgánicos. El primer sistema es un sensor capaz de detectar de forma selectiva el neurotransmisor serotonina, utilizando nanopartículas de oro funcionalizadas con ditio-bis(propionato de succinimidilo) y N-Acetil-L-Cisteína. El segundo sistema consiste en un sensor para la detección selectiva del neurotransmisor norepinefrina diseñado a partir de nanopartículas de oro funcionalizadas con 4-(liponiloxi)benzaldehído y ácido 4-mercato fenilborónico. El tercer sistema está compuesto por nanopartículas de oro funcionalizadas con 4-(liponiloxi)benzaldehído y N-Acetil-L-Cisteína, para la detección de normetanefrina, un importante biomarcador del tumor feocromocitoma. Todos estos sistemas se evalúan en medios competitivos como suero sanguíneo u orina. En el cuarto capítulo se muestran dos sistemas de liberación controlados enzimáticamente basados en la apertura de puertas moleculares. El primer sistema de liberación controlada responde a la presencia del neurotransmisor acetilcolina. En concreto, se utilizan nanopartículas de sílice mesoporosa funcionalizadas en su superficie con grupos de ácido fenilborónico y tapadas con la enzima acetilcolinesterasa mediante la formación de ésteres cíclicos de ácido fenilborónico entre las cadenas de oligosacáridos de la enzima y los grupos fenilborónicos de la superficie de las nanopartículas. En este caso la reacción enzimática produce ácido acético que da lugar a la hidrolisis de los ésteres borónicos, destapando los poros y liberando la carga contenida en el interior. Además, se evalúa la capacidad del dispositivo diseñado para liberar el citotóxico doxorubicina en células cancerosas en presencia de acetiltiocolina. El segundo sistema consiste en un nanodispositivo para la liberación controlada en respuesta al neurotransmisor L-glutamato. Para esto se utilizan nanopartículas tipo Janus de oro-sílice mesoporosa funcionalizadas con la enzima L-glutamato oxidasa en la parte del oro y con una puerta molecular autoinmolante de arilboronato en la superficie de la sílice. La liberación controlada se basa en el reconocimiento del L-glutamato por la enzima L-glutamato oxidasa y la posterior formación de peróxido de hidrogeno, que es la especie que induce la escisión de la puerta autoinmolante y la subsecuente apertura de los poros. Finalment es mostra que el sistema dissenyat és capaç d'alliberar un fàrmac citotòxic en cèl·lules de càncer de cervell després de detectar la presència de L-glutamat.[CA] La present tesi doctoral titulada "Reconeixement de neurotransmissors basat en nanopartícules d'or i de sílice mesoporosa per a aplicacions de detecció i alliberació controlada" és una tesi realitzada per compendi d'articles la qual se centra en el disseny, preparació, caracterització i avaluació de diferents nanodispositius per a la detecció colorimètrica de neurotransmissors i sistemes d'alliberació controlada que responen a neurotransmissors basats en nanopartícules d'or i nanopartícules de sílice mesoporosa equipades amb lligands orgànics, efectors enzimàtics, portes moleculars i espècies cromofluorogénicos o medicaments. En el primer capítol s'introdueix una visió general del que són els neurotransmissors, les seves principals característiques i l'important paper que aquests tenen en el funcionament del nostre organisme. A més es presenta una descripció general de les propietats i potencials aplicacions de les nanopartícules d'or funcionalitzades amb lligands orgànics com a sistemes de detecció, i de les nanopartícules mesoporoses de sílice funcionalitzades amb portes moleculars com a sistemes d'alliberament controlat. A continuació, en el segon capítol es presenten els objectius generals que són abordats en els següents capítols experimentals. En el tercer capítol, es presenten tres sistemes de detecció colorimètrica de neurotransmissors basats en l'agregació de nanopartícules d'or doblement funcionalitzades amb lligands orgànics. El primer sistema és un sensor capaç de detectar de forma selectiva el neurotransmissor serotonina, utilitzant nanopartícules d'or funcionalitzades amb ditiobis (propionat de succinimidilo) i N acetil-L-cisteïna. El segon sistema consisteix en un sensor per a la detecció selectiva de neurotransmissor norepinefrina dissenyat a partir de nanopartícules d'or funcionalitzades amb 4- (liponiloxi) benzaldehid i Àcid 4-mercatofenilborònic. El tercer sistema està compost per nanopartícules d'or funcionalitzades amb 4- (liponiloxi) benzaldehid i N acetil-L-cisteïna, per a la detecció de normatanefrina un important biomarcador del tumor feocromocitoma. Tots aquests sistemes s'avaluen en mitjans competitius com sèrum sanguini u orina. En el quart capítol es mostren dos sistemes d'alliberament controlats enzimàticament basats en l'obertura de portes moleculars. El primer sistema d'alliberament controlat respon a la presència del neurotransmissor acetilcolina. En concret, s'utilitzen nanopartícules de sílice mesoporosa funcionalitzades en la seva superfície amb grups d'àcid fenilborònic i tapades amb l'enzim acetilcolina esterasa mitjançant la formació d'èsters cíclics d'àcid fenilborònic entre les cadenes d'oligosacàrids de l'enzim i els grups fenilborónicos de la superfície de les nanopartícules. En aquest cas, la reacció enzimàtica produeix àcid acètic que dóna lloc a la hidròlisi dels èsters borònics, destapant els porus i alliberant la càrrega continguda a l'interior. A més, s'avalua la capacitat del dispositiu dissenyat per alliberar el citotòxic doxorubicina en cèl·lules canceroses en presència d'acetiltiocolina. El segon sistema consisteix en un nanodispositiu per alliberació controlada en resposta al neurotransmissor L-glutamat, per al que s'utilitzen nanopartícules tipus Janus d'or-sílice mesoporosa funcionalitzades amb l'enzim L-glutamat oxidasa en la part de l'or i amb una porta molecular autoimmolant d'arilboronat a la superfície de la sílice. La alliberació controlada es basa en el reconeixement de L-glutamat per l'enzim L-glutamat oxidasa i la posterior formació de peròxid d'hidrogen, que és l'espècie que indueix l'escissió de la porta autoimmolant i la subseqüent obertura dels porus. Finalment es mostra que el sistema dissenyat és capaç d'alliberar un fàrmac citotòxic en cèl·lules de càncer de cervell després de detectar la presència de L-glutamat.[EN] This doctoral thesis entitled "Neurotransmitters recognition based on gold and mesoporous silica nanoparticles for sensing and controlled release applications" it is a thesis carried out by compendium of articles, which is focused on the design, preparation, characterization and evaluation of nanodevices for the colorimetric sensing of neurotransmitters and controlled delivery systems responsive to neurotransmitters, based on gold nanoparticles and mesoporous silica nanoparticles equipped with organic ligands, enzymatic effectors, molecular gates and chromo-fluorogenic species or drugs. The first chapter introduces an overview about what neurotransmitters are, their main characteristics and the important role they play in the functioning of our body. In addition, a general description of the properties and potential applications of gold nanoparticles functionalized with organic ligands as detection systems and mesoporous silica nanoparticles functionalized with molecular gates as controlled delivery systems is presented. In the second chapter, the general objectives that are addressed in the following experimental chapters are presented. In the third chapter, three colorimetric detection systems of neurotransmitters based on the aggregation of gold nanoparticles doubly functionalized with organic ligands are presented. The first system is a sensor capable of selectively detecting the neurotransmitter serotonin, using gold nanoparticles functionalized with dithio-bis(succinimidyl propionate) and N acetyl-L-cysteine. The second system consists of a sensor for the selective detection of the neurotransmitter norepinephrine designed from gold nanoparticles functionalized with 4- (liponyloxy)benzaldehyde and 4-mercaptophenylboronic acid. The third system is composed of gold nanoparticles functionalized with 4-(liponyloxy)benzaldehyde and N-Acetyl-L-Cysteine, for the detection of normetanephrine, an important biomarker of the pheochromocytoma tumor. All these systems are evaluated in competitive media such as blood serum or urine. In the fourth chapter, two enzymatic controlled delivery systems based on the opening of molecular gates are developed. The first controlled delivery system responds to the presence of the neurotransmitter acetylcholine. Specifically, it consists of mesoporous silica nanoparticles functionalized on their surface with phenylboronic acid groups and capped with the enzyme acetylcholinesterase, via the formation of cyclic phenylboronic acid esters between the oligosaccharide chains of the enzyme and the phenylboronic groups on the nanoparticles surface. In this case, the enzymatic reaction produces acetic acid that induces the hydrolysis of the boronic esters, uncapping the pores and releasing the entrapped payload. In addition, the ability of the nanodevice to release the cytotoxic doxorubicin in cancer cells in the presence of acetylthiocholine is evaluated. The second delivery system consists of a nanodevice responsive to the neurotransmitter L-glutamate. It is based on Janus gold-silica mesoporous nanoparticles functionalized with the enzyme L-glutamate oxidase in the gold part and with a self-immolative arylboronate molecular gate on the surface of the silica. Controlled delivery is based on the recognition of L-glutamate by the enzyme L-glutamate oxidase and the subsequent formation of hydrogen peroxide, which results in the cleavage of the self-immolative gate and the uncapping of the pores. Finally, it is shown that the designed system is capable of releasing a cytotoxic drug in brain cancer cells after detecting the presence of L-glutamate.The authors acknowledge financial support from the Spanish Government (Projects MAT2015-64139-C4-1-R, MAT2015-64139-C4-4-R (MINECO/FEDER) and Project AGL2015-70235-C2-2-R) and the Generalitat Valenciana (Projects PROMETEOII/2014/047 and PROMETEO/2018/024). T. Godoy-Reyes is grateful to Generalitat Valenciana for her Santiago Grisolía fellowship. A. García-Fernández is grateful to the Spanish Government for her FPU fellowship. A. Llopis-Lorente thanks “La Caixa” Foundation for his PhD grant. SCSIE (Universitat de València) is gratefully acknowledged for all the equipment employed.Godoy Reyes, TM. (2020). Neurotransmitters recognition based on gold nanoparticles and mesoporous silica nanoparticles for sensing and controlled release applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158420TESI

    Carbon Nanotube- and Gold Nanoparticle-Based Materials For Electrochemical and Colorimetric Sensing Applications

    Get PDF
    Carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) are widely used for sensing applications due to their distinctive electrical and optical properties, and we have explored the development of methods that enable the incorporation of these nanomaterials into new and improved sensing devices. As a means for fabricating simple, low-cost and fast detection platforms for various applications, we have developed paper-based electrochemical detection platforms based on CNTs or platinum nanoparticle (PtNP)-CNT composite materials. We describe the use of a paper-based, low density, a three-dimensional thin film of interconnected CNTs as an electrode material. We studied the electrochemical properties of these paper-based CNT electrodes and demonstrated their use as an electrochemical sensor for the sensitive detection of guanine-based nucleotides. We further describe the functionalization of this paper-based electrode by fabricating a PtNP-SWCNT hybrid film via a vacuum filtration-based method. The interconnected PtNP structure formed on top of the CNT-coated paper was directly used as an electrocatalyst for methanol oxidation. Compared to paper-based PtNP-SWCNT hybrid films formed by electrochemical deposition, hybrid films formed by vacuum filtration showed a higher electrochemical surface area and enhanced electrocatalytic response to methanol oxidation. We have also developed methods based around DNA-modified AuNPs, which offer an excellent colorimetric platform for target detection. The DNA density on the surface of modified AuNPs affects enzymatic activity, colloidal stability of AuNPs, the orientation of the probe DNA and its hybridization efficiency. The combination of all these factors ultimately dictates the reaction time and sensitivity of colorimetric assays. We demonstrate the use of DTT as a modulator to control DNA surface coverage on the surface of AuNPs. Using this DTT treatment and a novel probe for exonuclease III activity, we have developed a colorimetric assay based on DTT-treated, DNA-modified AuNPs that can achieve more sensitive and rapid detection of DNA and enzymes relative to existing sensor platforms

    BioMEMS

    Get PDF
    As technological advancements widen the scope of applications for biomicroelectromechanical systems (BioMEMS or biomicrosystems), the field continues to have an impact on many aspects of life science operations and functionalities. Because BioMEMS research and development require the input of experts who use different technical languages and come from varying disciplines and backgrounds, scientists and students can avoid potential difficulties in communication and understanding only if they possess a skill set and understanding that enables them to work at the interface of engineering and biosciences. Keeping this duality in mind throughout, BioMEMS: Science and Engineering Perspectives supports and expedites the multidisciplinary learning involved in the development of biomicrosystems. Divided into nine chapters, it starts with a balanced introduction of biological, engineering, application, and commercialization aspects of the field. With a focus on molecules of biological interest, the book explores the building blocks of cells and viruses, as well as molecules that form the self-assembled monolayers (SAMs), linkers, and hydrogels used for making different surfaces biocompatible through functionalization. The book also discusses: Different materials and platforms used to develop biomicrosystems Various biological entities and pathogens (in ascending order of complexity) The multidisciplinary aspects of engineering bioactive surfaces Engineering perspectives, including methods of manufacturing bioactive surfaces and devices Microfluidics modeling and experimentation Device level implementation of BioMEMS concepts for different applications. Because BioMEMS is an application-driven field, the book also highlights the concepts of lab-on-a-chip (LOC) and micro total analysis system (μTAS), along with their pertinence to the emerging point-of-care (POC) and point-of-need (PON) applications
    corecore