26,386 research outputs found

    Simple, Efficient, and Neural Algorithms for Sparse Coding

    Full text link
    Sparse coding is a basic task in many fields including signal processing, neuroscience and machine learning where the goal is to learn a basis that enables a sparse representation of a given set of data, if one exists. Its standard formulation is as a non-convex optimization problem which is solved in practice by heuristics based on alternating minimization. Re- cent work has resulted in several algorithms for sparse coding with provable guarantees, but somewhat surprisingly these are outperformed by the simple alternating minimization heuristics. Here we give a general framework for understanding alternating minimization which we leverage to analyze existing heuristics and to design new ones also with provable guarantees. Some of these algorithms seem implementable on simple neural architectures, which was the original motivation of Olshausen and Field (1997a) in introducing sparse coding. We also give the first efficient algorithm for sparse coding that works almost up to the information theoretic limit for sparse recovery on incoherent dictionaries. All previous algorithms that approached or surpassed this limit run in time exponential in some natural parameter. Finally, our algorithms improve upon the sample complexity of existing approaches. We believe that our analysis framework will have applications in other settings where simple iterative algorithms are used.Comment: 37 pages, 1 figur

    Simple, efficient, and neural algorithms for sparse coding

    Get PDF
    Sparse coding is a basic task in many fields including signal processing, neuroscience and machine learning where the goal is to learn a basis that enables a sparse representation of a given set of data, if one exists. Its standard formulation is as a non-convex optimization problem which is solved in practice by heuristics based on alternating minimization. Re- cent work has resulted in several algorithms for sparse coding with provable guarantees, but somewhat surprisingly these are outperformed by the simple alternating minimization heuristics. Here we give a general framework for understanding alternating minimization which we leverage to analyze existing heuristics and to design new ones also with provable guarantees. Some of these algorithms seem implementable on simple neural architectures, which was the original motivation of Olshausen and Field (1997a) in introducing sparse coding. We also give the first efficient algorithm for sparse coding that works almost up to the information theoretic limit for sparse recovery on incoherent dictionaries. All previous algorithms that approached or surpassed this limit run in time exponential in some natural parameter. Finally, our algorithms improve upon the sample complexity of existing approaches. We believe that our analysis framework will have applications in other settings where simple iterative algorithms are used

    Role of homeostasis in learning sparse representations

    Full text link
    Neurons in the input layer of primary visual cortex in primates develop edge-like receptive fields. One approach to understanding the emergence of this response is to state that neural activity has to efficiently represent sensory data with respect to the statistics of natural scenes. Furthermore, it is believed that such an efficient coding is achieved using a competition across neurons so as to generate a sparse representation, that is, where a relatively small number of neurons are simultaneously active. Indeed, different models of sparse coding, coupled with Hebbian learning and homeostasis, have been proposed that successfully match the observed emergent response. However, the specific role of homeostasis in learning such sparse representations is still largely unknown. By quantitatively assessing the efficiency of the neural representation during learning, we derive a cooperative homeostasis mechanism that optimally tunes the competition between neurons within the sparse coding algorithm. We apply this homeostasis while learning small patches taken from natural images and compare its efficiency with state-of-the-art algorithms. Results show that while different sparse coding algorithms give similar coding results, the homeostasis provides an optimal balance for the representation of natural images within the population of neurons. Competition in sparse coding is optimized when it is fair. By contributing to optimizing statistical competition across neurons, homeostasis is crucial in providing a more efficient solution to the emergence of independent components

    Sparse Coding for Hyperspectral Images Using Random Dictionary and Soft Thresholding

    Get PDF
    Many techniques have been recently developed for classification of hyperspectral images (HSI) including support vector machines (SVMs), neural networks and graph-based methods. To achieve good performances for the classification, a good feature representation of the HSI is essential. A great deal of feature extraction algorithms have been developed such as principal component analysis (PCA) and independent component analysis (ICA). Sparse coding has recently shown state-of-the-art performances in many applications including image classification. In this paper, we present a feature extraction method for HSI data motivated by a recently developed sparse coding based image representation technique. Sparse coding consists of a dictionary learning step and an encoding step. In the learning step, we compared two different methods, L1-penalized sparse coding and random selection for the dictionary learning. In the encoding step, we utilized a soft threshold activation function to obtain feature representations for HSI. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center (KSC) and compared our results with those obtained by a recently proposed method, supervised locally linear embedding weighted k-nearest-neighbor (SLLE-WkNN) classifier. We have achieved better performances on this dataset in terms of the overall accuracy with a random dictionary. We conclude that this simple feature extraction framework might lead to more efficient HSI classification systems

    Feature detection using spikes: the greedy approach

    Full text link
    A goal of low-level neural processes is to build an efficient code extracting the relevant information from the sensory input. It is believed that this is implemented in cortical areas by elementary inferential computations dynamically extracting the most likely parameters corresponding to the sensory signal. We explore here a neuro-mimetic feed-forward model of the primary visual area (VI) solving this problem in the case where the signal may be described by a robust linear generative model. This model uses an over-complete dictionary of primitives which provides a distributed probabilistic representation of input features. Relying on an efficiency criterion, we derive an algorithm as an approximate solution which uses incremental greedy inference processes. This algorithm is similar to 'Matching Pursuit' and mimics the parallel architecture of neural computations. We propose here a simple implementation using a network of spiking integrate-and-fire neurons which communicate using lateral interactions. Numerical simulations show that this Sparse Spike Coding strategy provides an efficient model for representing visual data from a set of natural images. Even though it is simplistic, this transformation of spatial data into a spatio-temporal pattern of binary events provides an accurate description of some complex neural patterns observed in the spiking activity of biological neural networks.Comment: This work links Matching Pursuit with bayesian inference by providing the underlying hypotheses (linear model, uniform prior, gaussian noise model). A parallel with the parallel and event-based nature of neural computations is explored and we show application to modelling Primary Visual Cortex / image processsing. http://incm.cnrs-mrs.fr/perrinet/dynn/LaurentPerrinet/Publications/Perrinet04tau
    • …
    corecore