17,571 research outputs found

    Detecting Adverse Drug Events Using a Deep neural network Model

    Get PDF
    Adverse drug events represent a key challenge in public health, especially with respect to drug safety profiling and drug surveillance. Drug-drug interactions represent one of the most popular types of adverse drug events. Most computational approaches to this problem have used different types of drug-related information utilizing different types of machine learning algorithms to predict potential interactions between drugs. In this work, our focus is on the use of genetic information about the drugs, in particular, the protein sequence and protein structure of drug protein targets to predict potential interactions between drugs. We collected information on drug-drug interactions (DDIs) from the DrugBank database and divided them into multiple datasets based on the type of information, such as, chemical structure, protein targets, side effects, pathways, protein-protein interactions, protein structure, information about indications. We proposed a similarity-based Neural Network framework called protein sequence-structure similarity network (S3N), and used this to predict the novel DDIā€™s. The drug-drug similarities are computed using different categories of drug information based on multiple similarity metrics. We compare the results with those from the state-of-the art methods on this problem. Our results show that proposed method is quite competitive, at times outperforming the state-of-the-art. Our performance evaluations on different datasets showed the predictive performance as follows: Precision 91\%-98\%, Recall 90\%-96\%, F1 Score 86\%-95\%, AUC 88\%-99\% Accuracy 86\%-95\%. To further investigate the reliability of the proposed method, we utilize 158 drugs related to cardiovascular disease to evaluate the performance of our model and find out the new interactions among the drugs. Our model showed 90\% accuracy of detecting the existing drug interactions and identified 60 new DDIā€™s for the cardiovascular drugs. Our evaluation demonstrates the effectiveness of S3N in predicting DDIā€™s

    Representation learning of drug and disease terms for drug repositioning

    Full text link
    Drug repositioning (DR) refers to identification of novel indications for the approved drugs. The requirement of huge investment of time as well as money and risk of failure in clinical trials have led to surge in interest in drug repositioning. DR exploits two major aspects associated with drugs and diseases: existence of similarity among drugs and among diseases due to their shared involved genes or pathways or common biological effects. Existing methods of identifying drug-disease association majorly rely on the information available in the structured databases only. On the other hand, abundant information available in form of free texts in biomedical research articles are not being fully exploited. Word-embedding or obtaining vector representation of words from a large corpora of free texts using neural network methods have been shown to give significant performance for several natural language processing tasks. In this work we propose a novel way of representation learning to obtain features of drugs and diseases by combining complementary information available in unstructured texts and structured datasets. Next we use matrix completion approach on these feature vectors to learn projection matrix between drug and disease vector spaces. The proposed method has shown competitive performance with state-of-the-art methods. Further, the case studies on Alzheimer's and Hypertension diseases have shown that the predicted associations are matching with the existing knowledge.Comment: Accepted to appear in 3rd IEEE International Conference on Cybernetics (Spl Session: Deep Learning for Prediction and Estimation

    Automated Detection of Systematic Off-label Drug Use in Free Text of Electronic Medical Records.

    Get PDF
    Off-label use of a drug occurs when it is used in a manner that deviates from its FDA label. Studies estimate that 21% of prescriptions are off-label, with only 27% of those uses supported by evidence of safety and efficacy. We have developed methods to detect population level off-label usage using computationally efficient annotation of free text from clinical notes to generate features encoding empirical information about drug-disease mentions. By including additional features encoding prior knowledge about drugs, diseases, and known usage, we trained a highly accurate predictive model that was used to detect novel candidate off-label usages in a very large clinical corpus. We show that the candidate uses are plausible and can be prioritized for further analysis in terms of safety and efficacy

    The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions

    Get PDF
    Accepted for publication in a future issue of Future Medicinal Chemistry.The research into the use of small molecules as drugs continues to be a key driver in the development of molecular databases, computer-aided drug design software and collaborative platforms. The evolution of computational approaches is driven by the essential criteria that a drug molecule has to fulfill, from the affinity to targets to minimal side effects while having adequate absorption, distribution, metabolism, and excretion (ADME) properties. A combination of ligand- and structure-based drug development approaches is already used to obtain consensus predictions of small molecule activities and their off-target interactions. Further integration of these methods into easy-to-use workflows informed by systems biology could realize the full potential of available data in the drug discovery and reduce the attrition of drug candidates.Peer reviewe

    Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network.

    Get PDF
    Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions

    PREDICT: a method for inferring novel drug indications with application to personalized medicine

    Get PDF
    The authors present a new method, PREDICT, for the large-scale prediction of drug indications, and demonstrate its use on both approved drugs and novel molecules. They also provide a proof-of-concept for its potential utility in predicting patient-specific medications
    • ā€¦
    corecore