255,021 research outputs found

    FDive: Learning Relevance Models using Pattern-based Similarity Measures

    Full text link
    The detection of interesting patterns in large high-dimensional datasets is difficult because of their dimensionality and pattern complexity. Therefore, analysts require automated support for the extraction of relevant patterns. In this paper, we present FDive, a visual active learning system that helps to create visually explorable relevance models, assisted by learning a pattern-based similarity. We use a small set of user-provided labels to rank similarity measures, consisting of feature descriptor and distance function combinations, by their ability to distinguish relevant from irrelevant data. Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model, which classifies data according to the cluster affiliation. It also automatically prompts further relevance feedback to improve its accuracy. Uncertain areas, especially near the decision boundaries, are highlighted and can be refined by the user. We evaluate our approach by comparison to state-of-the-art feature selection techniques and demonstrate the usefulness of our approach by a case study classifying electron microscopy images of brain cells. The results show that FDive enhances both the quality and understanding of relevance models and can thus lead to new insights for brain research.Comment: 12 pages, 7 figures, 2 tables, LaTeX; corrected typo; added DO

    Giving order to image queries

    No full text
    Users of image retrieval systems often find it frustrating that the image they are looking for is not ranked near the top of the results they are presented. This paper presents a computational approach for ranking keyworded images in order of relevance to a given keyword. Our approach uses machine learning to attempt to learn what visual features within an image are most related to the keywords, and then provide ranking based on similarity to a visual aggregate. To evaluate the technique, a Web 2.0 application has been developed to obtain a corpus of user-generated ranking information for a given image collection that can be used to evaluate the performance of the ranking algorithm

    A Radial Basis Function and Semantic Learning Space Based Composite Learning Approach to Image Retrieval

    Full text link
    This paper introduces a composite learning approach for image retrieval with relevance feedback. The proposed system combines the radial basis function (RBF) based low-level learning and the semantic learning space (SLS) based high-level learning to retrieve the desired images with fewer than 3 feedback steps. User’s relevance feedback is utilized for updating both low-level and high-level features of the query image. Specifically, the RBF-based learning captures the non-linear relationship between the low-level features and the semantic meaning of an image. The SLS-based learning stores semantic features of each database image using randomly chosen semantic basis images. The similarity score is computed as the weighted combination of normalized similarity scores yielded from both RBF and SLS learning. Extensive experiments evaluate the performance of the proposed approach and demonstrate our system achieves higher retrieval accuracy than peer systems. Index Terms — Radial basis function, semanti

    Learning Video Retrieval Models with Relevance-Aware Online Mining

    Get PDF
    Due to the amount of videos and related captions uploaded every hour, deep learning-based solutions for cross-modal video retrieval are attracting more and more attention. A typical approach consists in learning a joint text-video embedding space, where the similarity of a video and its associated caption is maximized, whereas a lower similarity is enforced with all the other captions, called negatives. This approach assumes that only the video and caption pairs in the dataset are valid, but different captions - positives - may also describe its visual contents, hence some of them may be wrongly penalized. To address this shortcoming, we propose the Relevance-Aware Negatives and Positives mining (RANP) which, based on the semantics of the negatives, improves their selection while also increasing the similarity of other valid positives. We explore the influence of these techniques on two video-text datasets: EPIC-Kitchens-100 and MSR-VTT. By using the proposed techniques, we achieve considerable improvements in terms of nDCG and mAP, leading to state-of-the-art results, e.g. +5.3% nDCG and +3.0% mAP on EPIC-Kitchens-100. We share code and pretrained models at https://github.com/aranciokov/ranp

    Personalized Ranking in eCommerce Search

    Full text link
    We address the problem of personalization in the context of eCommerce search. Specifically, we develop personalization ranking features that use in-session context to augment a generic ranker optimized for conversion and relevance. We use a combination of latent features learned from item co-clicks in historic sessions and content-based features that use item title and price. Personalization in search has been discussed extensively in the existing literature. The novelty of our work is combining and comparing content-based and content-agnostic features and showing that they complement each other to result in a significant improvement of the ranker. Moreover, our technique does not require an explicit re-ranking step, does not rely on learning user profiles from long term search behavior, and does not involve complex modeling of query-item-user features. Our approach captures item co-click propensity using lightweight item embeddings. We experimentally show that our technique significantly outperforms a generic ranker in terms of Mean Reciprocal Rank (MRR). We also provide anecdotal evidence for the semantic similarity captured by the item embeddings on the eBay search engine.Comment: Under Revie

    Actionable feature discovery in counterfactuals using feature relevance explainers.

    Get PDF
    Counterfactual explanations focus on 'actionable knowledge' to help end-users understand how a Machine Learning model outcome could be changed to a more desirable outcome. For this purpose a counterfactual explainer needs to be able to reason with similarity knowledge in order to discover input dependencies that relate to outcome changes. Identifying the minimum subset of feature changes to action a change in the decision is an interesting challenge for counterfactual explainers. In this paper we show how feature relevance based explainers (i.e. LIME, SHAP), can inform a counterfactual explainer to identify the minimum subset of 'actionable features'. We demonstrate our DisCERN (Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods) algorithm on three datasets and compare against the widely used counterfactual approach DiCE. Our preliminary results show that DisCERN to be a viable strategy that should be adopted to minimise the actionable changes
    • …
    corecore