139 research outputs found

    Similarity-based Android Malware Detection Using Hamming Distance of Static Binary Features

    Full text link
    In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are first nearest neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN), and k-medoid based nearest neighbors (KMNN). In our proposed methods, we can trigger the alarm if we detect an Android app is malicious. Hence, our solutions help us to avoid the spread of detected malware on a broader scale. We provide a detailed description of the proposed detection methods and related algorithms. We include an extensive analysis to asses the suitability of our proposed similarity-based detection methods. In this way, we perform our experiments on three datasets, including benign and malware Android apps like Drebin, Contagio, and Genome. Thus, to corroborate the actual effectiveness of our classifier, we carry out performance comparisons with some state-of-the-art classification and malware detection algorithms, namely Mixed and Separated solutions, the program dissimilarity measure based on entropy (PDME) and the FalDroid algorithms. We test our experiments in a different type of features: API, intent, and permission features on these three datasets. The results confirm that accuracy rates of proposed algorithms are more than 90% and in some cases (i.e., considering API features) are more than 99%, and are comparable with existing state-of-the-art solutions.Comment: 20 pages, 8 figures, 11 tables, FGCS Elsevier journa

    XSS-FP: Browser Fingerprinting using HTML Parser Quirks

    Get PDF
    There are many scenarios in which inferring the type of a client browser is desirable, for instance to fight against session stealing. This is known as browser fingerprinting. This paper presents and evaluates a novel fingerprinting technique to determine the exact nature (browser type and version, eg Firefox 15) of a web-browser, exploiting HTML parser quirks exercised through XSS. Our experiments show that the exact version of a web browser can be determined with 71% of accuracy, and that only 6 tests are sufficient to quickly determine the exact family a web browser belongs to

    A multilabel fuzzy relevance clustering system for malware attack attribution in the edge layer of cyber-physical networks

    Get PDF
    The rapid increase in the number of malicious programs has made malware forensics a daunting task and caused users’ systems to become in danger. Timely identification of malware characteristics including its origin and the malware sample family would significantly limit the potential damage of malware. This is a more profound risk in Cyber-Physical Systems (CPSs), where a malware attack may cause significant physical damage to the infrastructure. Due to limited on-device available memory and processing power in CPS devices, most of the efforts for protecting CPS networks are focused on the edge layer, where the majority of security mechanisms are deployed. Since the majority of advanced and sophisticated malware programs are combining features from different families, these malicious programs are not similar enough to any existing malware family and easily evade binary classifier detection. Therefore, in this article, we propose a novel multilabel fuzzy clustering system for malware attack attribution. Our system is deployed on the edge layer to provide insight into applicable malware threats to the CPS network. We leverage static analysis by utilizing Opcode frequencies as the feature space to classify malware families. We observed that a multilabel classifier does not classify a part of samples. We named this problem the instance coverage problem. To overcome this problem, we developed an ensemble-based multilabel fuzzy classification method to suggest the relevance of a malware instance to the stricken families. This classifier identified samples of VirusShare, RansomwareTracker, and BIG2015 with an accuracy of 94.66%, 94.26%, and 97.56%, respectively

    Mustererkennungsbasierte Verteidgung gegen gezielte Angriffe

    Get PDF
    The speed at which everything and everyone is being connected considerably outstrips the rate at which effective security mechanisms are introduced to protect them. This has created an opportunity for resourceful threat actors which have specialized in conducting low-volume persistent attacks through sophisticated techniques that are tailored to specific valuable targets. Consequently, traditional approaches are rendered ineffective against targeted attacks, creating an acute need for innovative defense mechanisms. This thesis aims at supporting the security practitioner in bridging this gap by introducing a holistic strategy against targeted attacks that addresses key challenges encountered during the phases of detection, analysis and response. The structure of this thesis is therefore aligned to these three phases, with each one of its central chapters taking on a particular problem and proposing a solution built on a strong foundation on pattern recognition and machine learning. In particular, we propose a detection approach that, in the absence of additional authentication mechanisms, allows to identify spear-phishing emails without relying on their content. Next, we introduce an analysis approach for malware triage based on the structural characterization of malicious code. Finally, we introduce MANTIS, an open-source platform for authoring, sharing and collecting threat intelligence, whose data model is based on an innovative unified representation for threat intelligence standards based on attributed graphs. As a whole, these ideas open new avenues for research on defense mechanisms and represent an attempt to counteract the imbalance between resourceful actors and society at large.In unserer heutigen Welt sind alle und alles miteinander vernetzt. Dies bietet mächtigen Angreifern die Möglichkeit, komplexe Verfahren zu entwickeln, die auf spezifische Ziele angepasst sind. Traditionelle Ansätze zur Bekämpfung solcher Angriffe werden damit ineffektiv, was die Entwicklung innovativer Methoden unabdingbar macht. Die vorliegende Dissertation verfolgt das Ziel, den Sicherheitsanalysten durch eine umfassende Strategie gegen gezielte Angriffe zu unterstützen. Diese Strategie beschäftigt sich mit den hauptsächlichen Herausforderungen in den drei Phasen der Erkennung und Analyse von sowie der Reaktion auf gezielte Angriffe. Der Aufbau dieser Arbeit orientiert sich daher an den genannten drei Phasen. In jedem Kapitel wird ein Problem aufgegriffen und eine entsprechende Lösung vorgeschlagen, die stark auf maschinellem Lernen und Mustererkennung basiert. Insbesondere schlagen wir einen Ansatz vor, der eine Identifizierung von Spear-Phishing-Emails ermöglicht, ohne ihren Inhalt zu betrachten. Anschliessend stellen wir einen Analyseansatz für Malware Triage vor, der auf der strukturierten Darstellung von Code basiert. Zum Schluss stellen wir MANTIS vor, eine Open-Source-Plattform für Authoring, Verteilung und Sammlung von Threat Intelligence, deren Datenmodell auf einer innovativen konsolidierten Graphen-Darstellung für Threat Intelligence Stardards basiert. Wir evaluieren unsere Ansätze in verschiedenen Experimenten, die ihren potentiellen Nutzen in echten Szenarien beweisen. Insgesamt bereiten diese Ideen neue Wege für die Forschung zu Abwehrmechanismen und erstreben, das Ungleichgewicht zwischen mächtigen Angreifern und der Gesellschaft zu minimieren

    Bytewise Approximate Matching: The Good, The Bad, and The Unknown

    Get PDF
    Hash functions are established and well-known in digital forensics, where they are commonly used for proving integrity and file identification (i.e., hash all files on a seized device and compare the fingerprints against a reference database). However, with respect to the latter operation, an active adversary can easily overcome this approach because traditional hashes are designed to be sensitive to altering an input; output will significantly change if a single bit is flipped. Therefore, researchers developed approximate matching, which is a rather new, less prominent area but was conceived as a more robust counterpart to traditional hashing. Since the conception of approximate matching, the community has constructed numerous algorithms, extensions, and additional applications for this technology, and are still working on novel concepts to improve the status quo. In this survey article, we conduct a high-level review of the existing literature from a non-technical perspective and summarize the existing body of knowledge in approximate matching, with special focus on bytewise algorithms. Our contribution allows researchers and practitioners to receive an overview of the state of the art of approximate matching so that they may understand the capabilities and challenges of the field. Simply, we present the terminology, use cases, classification, requirements, testing methods, algorithms, applications, and a list of primary and secondary literature

    Neural malware detection

    Get PDF
    At the heart of today’s malware problem lies theoretically infinite diversity created by metamorphism. The majority of conventional machine learning techniques tackle the problem with the assumptions that a sufficiently large number of training samples exist and that the training set is independent and identically distributed. However, the lack of semantic features combined with the models under these wrong assumptions result largely in overfitting with many false positives against real world samples, resulting in systems being left vulnerable to various adversarial attacks. A key observation is that modern malware authors write a script that automatically generates an arbitrarily large number of diverse samples that share similar characteristics in program logic, which is a very cost-effective way to evade detection with minimum effort. Given that many malware campaigns follow this paradigm of economic malware manufacturing model, the samples within a campaign are likely to share coherent semantic characteristics. This opens up a possibility of one-to-many detection. Therefore, it is crucial to capture this non-linear metamorphic pattern unique to the campaign in order to detect these seemingly diverse but identically rooted variants. To address these issues, this dissertation proposes novel deep learning models, including generative static malware outbreak detection model, generative dynamic malware detection model using spatio-temporal isomorphic dynamic features, and instruction cognitive malware detection. A comparative study on metamorphic threats is also conducted as part of the thesis. Generative adversarial autoencoder (AAE) over convolutional network with global average pooling is introduced as a fundamental deep learning framework for malware detection, which captures highly complex non-linear metamorphism through translation invariancy and local variation insensitivity. Generative Adversarial Network (GAN) used as a part of the framework enables oneshot training where semantically isomorphic malware campaigns are identified by a single malware instance sampled from the very initial outbreak. This is a major innovation because, to the best of our knowledge, no approach has been found to this challenging training objective against the malware distribution that consists of a large number of very sparse groups artificially driven by arms race between attackers and defenders. In addition, we propose a novel method that extracts instruction cognitive representation from uninterpreted raw binary executables, which can be used for oneto- many malware detection via one-shot training against frequency spectrum of the Transformer’s encoded latent representation. The method works regardless of the presence of diverse malware variations while remaining resilient to adversarial attacks that mostly use random perturbation against raw binaries. Comprehensive performance analyses including mathematical formulations and experimental evaluations are provided, with the proposed deep learning framework for malware detection exhibiting a superior performance over conventional machine learning methods. The methods proposed in this thesis are applicable to a variety of threat environments here artificially formed sparse distributions arise at the cyber battle fronts.Doctor of Philosoph
    • …
    corecore