31,244 research outputs found

    Duplicate Detection in Probabilistic Data

    Get PDF
    Collected data often contains uncertainties. Probabilistic databases have been proposed to manage uncertain data. To combine data from multiple autonomous probabilistic databases, an integration of probabilistic data has to be performed. Until now, however, data integration approaches have focused on the integration of certain source data (relational or XML). There is no work on the integration of uncertain (esp. probabilistic) source data so far. In this paper, we present a first step towards a concise consolidation of probabilistic data. We focus on duplicate detection as a representative and essential step in an integration process. We present techniques for identifying multiple probabilistic representations of the same real-world entities. Furthermore, for increasing the efficiency of the duplicate detection process we introduce search space reduction methods adapted to probabilistic data

    ERBlox: Combining Matching Dependencies with Machine Learning for Entity Resolution

    Full text link
    Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called "matching dependencies" (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating four components of ER: (a) Building a classifier for duplicate/non-duplicate record pairs built using machine learning (ML) techniques; (b) Use of MDs for supporting the blocking phase of ML; (c) Record merging on the basis of the classifier results; and (d) The use of the declarative language "LogiQL" -an extended form of Datalog supported by the "LogicBlox" platform- for all activities related to data processing, and the specification and enforcement of MDs.Comment: Final journal version, with some minor technical corrections. Extended version of arXiv:1508.0601

    Image mining: issues, frameworks and techniques

    Get PDF
    [Abstract]: Advances in image acquisition and storage technology have led to tremendous growth in significantly large and detailed image databases. These images, if analyzed, can reveal useful information to the human users. Image mining deals with the extraction of implicit knowledge, image data relationship, or other patterns not explicitly stored in the images. Image mining is more than just an extension of data mining to image domain. It is an interdisciplinary endeavor that draws upon expertise in computer vision, image processing, image retrieval, data mining, machine learning, database, and artificial intelligence. Despite the development of many applications and algorithms in the individual research fields cited above, research in image mining is still in its infancy. In this paper, we will examine the research issues in image mining, current developments in image mining, particularly, image mining frameworks, state-of-the-art techniques and systems. We will also identify some future research directions for image mining at the end of this paper

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure
    corecore