4,205 research outputs found

    Unified Embedding and Metric Learning for Zero-Exemplar Event Detection

    Get PDF
    Event detection in unconstrained videos is conceived as a content-based video retrieval with two modalities: textual and visual. Given a text describing a novel event, the goal is to rank related videos accordingly. This task is zero-exemplar, no video examples are given to the novel event. Related works train a bank of concept detectors on external data sources. These detectors predict confidence scores for test videos, which are ranked and retrieved accordingly. In contrast, we learn a joint space in which the visual and textual representations are embedded. The space casts a novel event as a probability of pre-defined events. Also, it learns to measure the distance between an event and its related videos. Our model is trained end-to-end on publicly available EventNet. When applied to TRECVID Multimedia Event Detection dataset, it outperforms the state-of-the-art by a considerable margin.Comment: IEEE CVPR 201

    New Deep Neural Networks for Unsupervised Feature Learning on Graph Data

    Get PDF
    Graph data are ubiquitous in the real world, such as social networks, biological networks. To analyze graph data, a fundamental task is to learn node features to benefit downstream tasks, such as node classification, community detection. Inspired by the powerful feature learning capability of deep neural networks on various tasks, it is important and necessary to explore deep neural networks for feature learning on graphs. Different from the regular image and sequence data, graph data encode the complicated relational information between different nodes, which challenges the classical deep neural networks. Moreover, in real-world applications, the label of nodes in graph data is usually not available, which makes the feature learning on graphs more difficult. To address these challenging issues, this thesis is focusing on designing new deep neural networks to effectively explore the relational information for unsupervised feature learning on graph data. First, to address the sparseness issue of the relational information, I propose a new proximity generative adversarial network which can discover the underlying relational information for learning better node representations. Meanwhile, a new self-paced network embedding method is designed to address the unbalance issue of the relational information when learning node representations. Additionally, to deal with rich attributes associated to nodes, I develop a new deep neural network to capture various relational information in both topological structure and node attributes for enhancing network embedding. Furthermore, to preserve the relational information in the hidden layers of deep neural networks, I develop a novel graph convolutional neural network (GCN) based on conditional random fields, which is the first algorithm applying this kind of graphical models to graph neural networks in an unsupervised manner
    • …
    corecore