4,134 research outputs found

    Graph theoretic methods for the analysis of structural relationships in biological macromolecules

    Get PDF
    Subgraph isomorphism and maximum common subgraph isomorphism algorithms from graph theory provide an effective and an efficient way of identifying structural relationships between biological macromolecules. They thus provide a natural complement to the pattern matching algorithms that are used in bioinformatics to identify sequence relationships. Examples are provided of the use of graph theory to analyze proteins for which three-dimensional crystallographic or NMR structures are available, focusing on the use of the Bron-Kerbosch clique detection algorithm to identify common folding motifs and of the Ullmann subgraph isomorphism algorithm to identify patterns of amino acid residues. Our methods are also applicable to other types of biological macromolecule, such as carbohydrate and nucleic acid structures

    Chemoinformatics Research at the University of Sheffield: A History and Citation Analysis

    Get PDF
    This paper reviews the work of the Chemoinformatics Research Group in the Department of Information Studies at the University of Sheffield, focusing particularly on the work carried out in the period 1985-2002. Four major research areas are discussed, these involving the development of methods for: substructure searching in databases of three-dimensional structures, including both rigid and flexible molecules; the representation and searching of the Markush structures that occur in chemical patents; similarity searching in databases of both two-dimensional and three-dimensional structures; and compound selection and the design of combinatorial libraries. An analysis of citations to 321 publications from the Group shows that it attracted a total of 3725 residual citations during the period 1980-2002. These citations appeared in 411 different journals, and involved 910 different citing organizations from 54 different countries, thus demonstrating the widespread impact of the Group's work

    SuperLigands – a database of ligand structures derived from the Protein Data Bank

    Get PDF
    BACKGROUND: Currently, the PDB contains approximately 29,000 protein structures comprising over 70,000 experimentally determined three-dimensional structures of over 5,000 different low molecular weight compounds. Information about these PDB ligands can be very helpful in the field of molecular modelling and prediction, particularly for the prediction of protein binding sites and function. DESCRIPTION: Here we present an Internet accessible database delivering PDB ligands in the MDL Mol file format which, in contrast to the PDB format, includes information about bond types. Structural similarity of the compounds can be detected by calculation of Tanimoto coefficients and by three-dimensional superposition. Topological similarity of PDB ligands to known drugs can be assessed via Tanimoto coefficients. CONCLUSION: SuperLigands supplements the set of existing resources of information about small molecules bound to PDB structures. Allowing for three-dimensional comparison of the compounds as a novel feature, this database represents a valuable means of analysis and prediction in the field of biological and medical research

    Superimposé: a 3D structural superposition server

    Get PDF
    The Superimposé webserver performs structural similarity searches with a preference towards 3D structure-based methods. Similarities can be detected between small molecules (e.g. drugs), parts of large structures (e.g. binding sites of proteins) and entire proteins. For this purpose, a number of algorithms were implemented and various databases are provided. Superimposé assists the user regarding the selection of a suitable combination of algorithm and database. After the computation on our server infrastructure, a visual assessment of the results is provided. The structure-based in silico screening for similar drug-like compounds enables the detection of scaffold-hoppers with putatively similar effects. The possibility to find similar binding sites can be of special interest in the functional analysis of proteins. The search for structurally similar proteins allows the detection of similar folds with different backbone topology. The Superimposé server is available at: http://bioinformatics.charite.de/superimpose

    Representation, searching and discovery of patterns of bases in complex RNA structures

    Get PDF
    We describe a graph theoretic method designed to perform efficient searches for substructural patterns in nucleic acid structural coordinate databases using a simplified vectorial representation. Two vectors represent each nucleic acid base and the relative positions of bases with respect to one another are described in terms of distances between the defined start and end points of the vectors on each base. These points comprise the nodes and the distances the edges of a graph, and a pattern search can then be performed using a subgraph isomorphism algorithm. The minimal representation was designed to facilitate searches for complex patterns but was first tested on simple, well-characterised arrangements of bases such as base pairs and GNRA-tetraloop receptor interactions. The method performed very well for these interaction types. A survey of side-by-side base interactions, of which the adenosine platform is the best known example, also locates examples of similar base rearrangements that we consider to be important in structural regulation. A number of examples were found, with GU platforms being particularly prevalent. A GC platform in the RNA of the Thermus thermophilus small ribosomal subunit is in an analogous position to an adenosine platform in other species. An unusual GG platform is also observed close to one of the substrate binding sites in Haloarcula marismortui large ribosomal subunit RNA

    Biological Systems Workbook: Data modelling and simulations at molecular level

    Get PDF
    Nowadays, there are huge quantities of data surrounding the different fields of biology derived from experiments and theoretical simulations, where results are often stored in biological databases that are growing at a vertiginous rate every year. Therefore, there is an increasing research interest in the application of mathematical and physical models able to produce reliable predictions and explanations to understand and rationalize that information. All these investigations are helping to overcome biological questions pushing forward in the solution of problems faced by our society. In this Biological Systems Workbook, we aim to introduce the basic pieces allowing life to take place, from the 3D structural point of view. We will start learning how to look at the 3D structure of molecules from studying small organic molecules used as drugs. Meanwhile, we will learn some methods that help us to generate models of these structures. Then we will move to more complex natural organic molecules as lipid or carbohydrates, learning how to estimate and reproduce their dynamics. Later, we will revise the structure of more complex macromolecules as proteins or DNA. Along this process, we will refer to different computational tools and databases that will help us to search, analyze and model the different molecular systems studied in this course

    Bioinformatics

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.After reading this chapter, you should know the answers to these questions: Why is sequence, structure, and biological pathway information relevant to medicine? Where on the Internet should you look for a DNA sequence, a protein sequence, or a protein structure? What are two problems encountered in analyzing biological sequence, structure, and function? How has the age of genomics changed the landscape of bioinformatics? What two changes should we anticipate in the medical record as a result of these new information sources? What are two computational challenges in bioinformatics for the future

    Three-dimensional Structure Databases of Biological Macromolecules

    Get PDF
    Databases of three-dimensional structures of proteins (and their associated molecules) provide: (a)Curated repositories of coordinates of experimentally determined structures, including extensive metadata; for instance information about provenance, details about data collection and interpretation, and validation of results.(b)Information-retrieval tools to allow searching to identify entries of interest and provide access to them.(c)Links among databases, especially to databases of amino-acid and genetic sequences, and of protein function; and links to software for analysis of amino-acid sequence and protein structure, and for structure prediction.(d)Collections of predicted three-dimensional structures of proteins. These will become more and more important after the breakthrough in structure prediction achieved by AlphaFold2. The single global archive of experimentally determined biomacromolecular structures is the Protein Data Bank (PDB). It is managed by wwPDB, a consortium of five partner institutions: the Protein Data Bank in Europe (PDBe), the Research Collaboratory for Structural Bioinformatics (RCSB), the Protein Data Bank Japan (PDBj), the BioMagResBank (BMRB), and the Electron Microscopy Data Bank (EMDB). In addition to jointly managing the PDB repository, the individual wwPDB partners offer many tools for analysis of protein and nucleic acid structures and their complexes, including providing computer-graphic representations. Their collective and individual websites serve as hubs of the community of structural biologists, offering newsletters, reports from Task Forces, training courses, and “helpdesks,” as well as links to external software. Many specialized projects are based on the information contained in the PDB. Especially important are SCOP, CATH, and ECOD, which present classifications of protein domains

    Navigating 3D electron microscopy maps with EM-SURFER

    Get PDF
    corecore