221,737 research outputs found

    Spherical harmonics coeffcients for ligand-based virtual screening of cyclooxygenase inhibitors

    Get PDF
    Background: Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. Methodology/Principal Findings: We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. Conclusions/Significance: 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort

    Molecular similarity for machine learning in drug development : poster presentation

    Get PDF
    Poster presentation In pharmaceutical research and drug development, machine learning methods play an important role in virtual screening and ADME/Tox prediction. For the application of such methods, a formal measure of similarity between molecules is essential. Such a measure, in turn, depends on the underlying molecular representation. Input samples have traditionally been modeled as vectors. Consequently, molecules are represented to machine learning algorithms in a vectorized form using molecular descriptors. While this approach is straightforward, it has its shortcomings. Amongst others, the interpretation of the learned model can be difficult, e.g. when using fingerprints or hashing. Structured representations of the input constitute an alternative to vector based representations, a trend in machine learning over the last years. For molecules, there is a rich choice of such representations. Popular examples include the molecular graph, molecular shape and the electrostatic field. We have developed a molecular similarity measure defined directly on the (annotated) molecular graph, a long-standing established topological model for molecules. It is based on the concepts of optimal atom assignments and iterative graph similarity. In the latter, two atoms are considered similar if their neighbors are similar. This recursive definition leads to a non-linear system of equations. We show how to iteratively solve these equations and give bounds on the computational complexity of the procedure. Advantages of our similarity measure include interpretability (atoms of two molecules are assigned to each other, each pair with a score expressing local similarity; this can be visualized to show similar regions of two molecules and the degree of their similarity) and the possibility to introduce knowledge about the target where available. We retrospectively tested our similarity measure using support vector machines for virtual screening on several pharmaceutical and toxicological datasets, with encouraging results. Prospective studies are under way

    A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning

    Full text link
    Molecular shape and geometry dictate key biophysical recognition processes, yet many graph neural networks disregard 3D information for molecular property prediction. Here, we propose a new contrastive-learning procedure for graph neural networks, Molecular Contrastive Learning from Shape Similarity (MolCLaSS), that implicitly learns a three-dimensional representation. Rather than directly encoding or targeting three-dimensional poses, MolCLaSS matches a similarity objective based on Gaussian overlays to learn a meaningful representation of molecular shape. We demonstrate how this framework naturally captures key aspects of three-dimensionality that two-dimensional representations cannot and provides an inductive framework for scaffold hopping

    Rigid-body fitting to atomic force microscopy images for inferring probe shape and biomolecular structure

    Get PDF
    Atomic force microscopy (AFM) can visualize functional biomolecules near the physiological condition, but the observed data are limited to the surface height of specimens. Since the AFM images highly depend on the probe tip shape, for successful inference of molecular structures from the measurement, the knowledge of the probe shape is required, but is often missing. Here, we developed a method of the rigid-body fitting to AFM images, which simultaneously finds the shape of the probe tip and the placement of the molecular structure via an exhaustive search. First, we examined four similarity scores via twin-experiments for four test proteins, finding that the cosine similarity score generally worked best, whereas the pixel-RMSD and the correlation coefficient were also useful. We then applied the method to two experimental high-speed-AFM images inferring the probe shape and the molecular placement. The results suggest that the appropriate similarity score can differ between target systems. For an actin filament image, the cosine similarity apparently worked best. For an image of the flagellar protein FlhAC, we found the correlation coefficient gave better results. This difference may partly be attributed to the flexibility in the target molecule, ignored in the rigid-body fitting. The inferred tip shape and placement results can be further refined by other methods, such as the flexible fitting molecular dynamics simulations. The developed software is publicly available

    Molecular similarity of MDR inhibitors

    Get PDF
    Everyone is free to re-use the published material if proper accreditation/citation of the original publication is given. http://creativecommons.org/licences/by/3.0/The molecular similarity of multidrug resistance (MDR) inhibitors was evaluated using the point centred atom charge approach in an attempt to find some common features of structurally unrelated inhibitors. A series of inhibitors of bacterial MDR were studied and there is a high similarity between these in terms of their shape, presence and orientation of aromatic ring moieties. A comparison of the lipophilic properties of these molecules has also been conducted suggesting that this factor is important in MDR inhibition.Peer reviewe

    Protein signatures using electrostatic molecular surfaces in harmonic space

    Full text link
    We developed a novel method based on the Fourier analysis of protein molecular surfaces to speed up the analysis of the vast structural data generated in the post-genomic era. This method computes the power spectrum of surfaces of the molecular electrostatic potential, whose three-dimensional coordinates have been either experimentally or theoretically determined. Thus we achieve a reduction of the initial three-dimensional information on the molecular surface to the one-dimensional information on pairs of points at a fixed scale apart. Consequently, the similarity search in our method is computationally less demanding and significantly faster than shape comparison methods. As proof of principle, we applied our method to a training set of viral proteins that are involved in major diseases such as Hepatitis C, Dengue fever, Yellow fever, Bovine viral diarrhea and West Nile fever. The training set contains proteins of four different protein families, as well as a mammalian representative enzyme. We found that the power spectrum successfully assigns a unique signature to each protein included in our training set, thus providing a direct probe of functional similarity among proteins. The results agree with established biological data from conventional structural biochemistry analyses.Comment: 9 pages, 10 figures Published in PeerJ (2013), https://peerj.com/articles/185

    Spherical Harmonics Coefficients for Ligand-Based Virtual Screening of Cyclooxygenase Inhibitors

    Get PDF
    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening.We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization.12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort

    PubChem3D: Diversity of shape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The shape diversity of 16.4 million biologically relevant molecules from the PubChem Compound database and their 1.46 billion diverse conformers was explored as a function of molecular volume.</p> <p>Results</p> <p>The diversity of shape space was investigated by determining the shape similarity threshold to achieve a maximum on the count of reference shapes per unit of conformer volume. The rate of growth in shape space, as represented by a decreasing shape similarity threshold, was found to be remarkably smooth as a function of volume. There was no apparent correlation between the count of conformers per unit volume and their diversity, meaning that a single reference shape can describe the shape space of many chemical structures. The ability of a volume to describe the shape space of lesser volumes was also examined. It was shown that a given volume was able to describe 40-70% of the shape diversity of lesser volumes, for the majority of the volume range considered in this study.</p> <p>Conclusion</p> <p>The relative growth of shape diversity as a function of volume and shape similarity is surprisingly uniform. Given the distribution of chemicals in PubChem versus what is theoretically synthetically possible, the results from this analysis should be considered a conservative estimate to the true diversity of shape space.</p

    MOLECULAR CHARACTERIZATION OF GENE 16S rRNA MICRO SYMBIONTS

    Get PDF
    Molecular characterization studies have been conducted 16S rRNA gene micro symbiont of sponge origin Melawai Beach, Balikpapan in East Kalimantan. Objective analysis of histomorphological research, isolation-purification, molecular characterization of micro-symbiont genes in order to search symbiont bacteria that can live in extreme environments contaminated hydrocarbon waste. The research method that morphological identification, isolation-purification and molecular characterization of the 16S rRNA gene with Chain Reaction Polymerization method. The results of histo-morphological analysis concluded sponge samples with species of Callyspongia sp Isolation and purification mikro symbionts of sponge obtained 2 (two) isolates. Characteristics of Isolates 1; spherical shape, colonize and creamy, while isolates 2; jagged shape, oval and white colonies. Molecular characterization of the 16S rRNA gene by PCR, Bacillus subtilis strain BAB-684 identification for isolates one is the number of nucleotide pairs reached 899 bp and the degree of similarity in GenBank reached 89% homologous, while the second is a Bacillus flexus strain PHCDB20 isolates the number reached 950 bp nucleotide pairs with the degree of similarity in GenBank reached 99% homologous.Keywords: Callyspongia sp, micro-symbionts, characterization, gene Molecule
    • …
    corecore