14,736 research outputs found

    XLIndy: interactive recognition and information extraction in spreadsheets

    Get PDF
    Over the years, spreadsheets have established their presence in many domains, including business, government, and science. However, challenges arise due to spreadsheets being partially-structured and carrying implicit (visual and textual) information. This translates into a bottleneck, when it comes to automatic analysis and extraction of information. Therefore, we present XLIndy, a Microsoft Excel add-in with a machine learning back-end, written in Python. It showcases our novel methods for layout inference and table recognition in spreadsheets. For a selected task and method, users can visually inspect the results, change configurations, and compare different runs. This enables iterative fine-tuning. Additionally, users can manually revise the predicted layout and tables, and subsequently save them as annotations. The latter is used to measure performance and (re-)train classifiers. Finally, data in the recognized tables can be extracted for further processing. XLIndy supports several standard formats, such as CSV and JSON.Peer ReviewedPostprint (author's final draft

    Cortical Dynamics of Contextually-Cued Attentive Visual Learning and Search: Spatial and Object Evidence Accumulation

    Full text link
    How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.CELEST, an NSF Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR0011-09-3-0001, HR0011-09-C-0011

    Visual Detection of Structural Changes in Time-Varying Graphs Using Persistent Homology

    Full text link
    Topological data analysis is an emerging area in exploratory data analysis and data mining. Its main tool, persistent homology, has become a popular technique to study the structure of complex, high-dimensional data. In this paper, we propose a novel method using persistent homology to quantify structural changes in time-varying graphs. Specifically, we transform each instance of the time-varying graph into metric spaces, extract topological features using persistent homology, and compare those features over time. We provide a visualization that assists in time-varying graph exploration and helps to identify patterns of behavior within the data. To validate our approach, we conduct several case studies on real world data sets and show how our method can find cyclic patterns, deviations from those patterns, and one-time events in time-varying graphs. We also examine whether persistence-based similarity measure as a graph metric satisfies a set of well-established, desirable properties for graph metrics

    Discursive design thinking: the role of explicit knowledge in creative architectural design reasoning

    Get PDF
    The main hypothesis investigated in this paper is based upon the suggestion that the discursive reasoning in architecture supported by an explicit knowledge of spatial configurations can enhance both design productivity and the intelligibility of design solutions. The study consists of an examination of an architect’s performance while solving intuitively a well-defined problem followed by an analysis of the spatial structure of their design solutions. One group of architects will attempt to solve the design problem logically, rationalizing their design decisions by implementing their explicit knowledge of spatial configurations. The other group will use an implicit form of such knowledge arising from their architectural education to reason about their design acts. An integrated model of protocol analysis combining linkography and macroscopic coding is used to analyze the design processes. The resulting design outcomes will be evaluated quantitatively in terms of their spatial configurations. The analysis appears to show that an explicit knowledge of the rules of spatial configurations, as possessed by the first group of architects can partially enhance their function-driven judgment producing permeable and well-structured spaces. These findings are particularly significant as they imply that an explicit rather than an implicit knowledge of the fundamental rules that make a layout possible can lead to a considerable improvement in both the design process and product. This suggests that by externalizing th

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    Regression and Classification for Direction-of-Arrival Estimation with Convolutional Recurrent Neural Networks

    Full text link
    We present a novel learning-based approach to estimate the direction-of-arrival (DOA) of a sound source using a convolutional recurrent neural network (CRNN) trained via regression on synthetic data and Cartesian labels. We also describe an improved method to generate synthetic data to train the neural network using state-of-the-art sound propagation algorithms that model specular as well as diffuse reflections of sound. We compare our model against three other CRNNs trained using different formulations of the same problem: classification on categorical labels, and regression on spherical coordinate labels. In practice, our model achieves up to 43% decrease in angular error over prior methods. The use of diffuse reflection results in 34% and 41% reduction in angular prediction errors on LOCATA and SOFA datasets, respectively, over prior methods based on image-source methods. Our method results in an additional 3% error reduction over prior schemes that use classification based networks, and we use 36% fewer network parameters

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features
    corecore