5,860 research outputs found

    Automatic annotation of bioinformatics workflows with biomedical ontologies

    Full text link
    Legacy scientific workflows, and the services within them, often present scarce and unstructured (i.e. textual) descriptions. This makes it difficult to find, share and reuse them, thus dramatically reducing their value to the community. This paper presents an approach to annotating workflows and their subcomponents with ontology terms, in an attempt to describe these artifacts in a structured way. Despite a dearth of even textual descriptions, we automatically annotated 530 myExperiment bioinformatics-related workflows, including more than 2600 workflow-associated services, with relevant ontological terms. Quantitative evaluation of the Information Content of these terms suggests that, in cases where annotation was possible at all, the annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014 conference), 15 pages, 4 figure

    Layer Decomposition: An Effective Structure-based Approach for Scientific Workflow Similarity

    Get PDF
    International audienceScientific workflows have become a valuable tool for large-scale data processing and analysis. This has led to the creation of specialized online repositories to facilitate workflow sharing and reuse. Over time, these repositories have grown to sizes that call for advanced methods to support workflow discovery, in particular for effective similarity search. Here, we present a novel and intuitive workflow similarity measure that is based on layer decomposition. Layer decomposition accounts for the directed dataflow underlying scientific workflows, a property which has not been adequately considered in previous methods. We comparatively evaluate our algorithm using a gold standard for 24 query workflows from a repository of almost 1500 scientific workflows, and show that it a) delivers the best results for similarity search, b) has a much lower runtime than other, often highly complex competitors in structure-aware workflow comparison, and c) can be stacked easily with even faster, structure-agnostic approaches to further reduce runtime while retaining result quality

    Effective and Efficient Similarity Search in Scientific Workflow Repositories

    Get PDF
    International audienceScientific workflows have become a valuable tool for large-scale data processing and analysis. This has led to the creation of specialized online repositories to facilitate worflkow sharing and reuse. Over time, these repositories have grown to sizes that call for advanced methods to support workflow discovery, in particular for similarity search. Effective similarity search requires both high quality algorithms for the comparison of scientific workflows and efficient strategies for indexing, searching, and ranking of search results. Yet, the graph structure of scientific workflows poses severe challenges to each of these steps. Here, we present a complete system for effective and efficient similarity search in scientific workflow repositories, based on the Layer Decompositon approach to scientific workflow comparison. Layer Decompositon specifically accounts for the directed dataflow underlying scientific workflows and, compared to other state-of-the-art methods, delivers best results for similarity search at comparably low runtimes. Stacking Layer Decomposition with even faster, structure-agnostic approaches allows us to use proven, off-the-shelf tools for workflow indexing to further reduce runtimes and scale similarity search to sizes of current repositories

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page
    • …
    corecore