436 research outputs found

    On the unbearable lightness of FIPS 140-2 randomness tests

    Get PDF
    Random number generation is critical to many applications. Gaming, gambling, and particularly cryptography all require random numbers that are uniform and unpredictable. For testing whether supposedly random sources feature particular characteristics commonly found in random sequences, batteries of statistical tests are used. These are fundamental tools in the evaluation of random number generators and form part of the pathway to certification of secure systems implementing them. Although there have been previous studies into this subject becker2013stealthy, RNG manufacturers and vendors continue to use statistical tests known to be of dubious reliability, in their RNG verification processes. Our research shows that FIPS-140-2 cannot identify adversarial biases effectively, even very primitive ones. Concretely, this work illustrates the inability of the FIPS 140 family of tests to detect bias in three obviously flawed PRNGs. Deprecated by official standards, these tests are nevertheless still widely used, for example in hardware-level self-test schemes incorporated into the design of many True RNGs (TRNGs). They are also popular with engineers and cryptographers for quickly assessing the randomness characteristics of security primitives and protocols, and even with manufacturers aiming to market the randomness features of their products to potential customers. In the following, we present three biased-by-design RNGs to show in explicit detail how simple, glaringly obvious biases are not detected by any of the FIPS 140-2 tests. One of these RNGs is backdoored, leaking key material, while others suffer from significantly reduced unpredictability in their output sequences. To make our point even more straightforward, we show how files containing images can also fool the FIPS 140 family of tests. We end with a discussion on the security issues affecting an interesting and active project to create a randomness beacon. Their authors only tested the quality of their randomness with the FIPS 140 family of tests, and we will show how this has led them to produce predictable output that, albeit passing FIPS fails other randomness tests quite catastrophically

    Including network routers in forensic investigation

    No full text
    Network forensics concerns the identification and preservation of evidence from an event that has occurred or is likely to occur. The scope of network forensics encompasses the networks, systems and devices associated with the physical and human networks. In this paper we are assessing the forensic potential of a router in investigations. A single router is taken as a case study and analysed to determine its forensic value from both static and live investigation perspectives. In the live investigation, tests using steps from two to seven routers were used to establish benchmark expectations for network variations. We find that the router has many attributes that make it a repository and a site for evidence collection. The implications of this research are for investigators and the inclusion of routers in network forensic investigations

    Including Network Routers In Forensic Investigation

    Get PDF
    Network forensics concerns the identification and preservation of evidence from an event that has occurred or is likely to occur. The scope of network forensics encompasses the networks, systems and devices associated with the physical and human networks. In this paper we are assessing the forensic potential of a router in investigations. A single router is taken as a case study and analysed to determine its forensic value from both static and live investigation perspectives. In the live investigation, tests using steps from two to seven routers were used to establish benchmark expectations for network variations. We find that the router has many attributes that make it a repository and a site for evidence collection. The implications of this research are for investigators and the inclusion of routers in network forensic investigations

    Fame for sale: efficient detection of fake Twitter followers

    Get PDF
    Fake followers\textit{Fake followers} are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel Class A\textit{Class A} classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity
    • …
    corecore