1,475 research outputs found

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Cross-Dictionary Linking at Sense Level with a Double-Layer Classifier

    Get PDF
    We present a system for linking dictionaries at the sense level, which is part of a wider programme aiming to extend current lexical resources and to create new ones by automatic means. One of the main challenges of the sense linking task is the existence of non one-to-one mappings among senses. Our system handles this issue by addressing the task as a binary classification problem using standard Machine Learning methods, where each sense pair is classified independently from the others. In addition, it implements a second, statistically-based classification layer to also model the dependence existing among sense pairs, namely, the fact that a sense in one dictionary that is already linked to a sense in the other dictionary has a lower probability of being linked to a further sense. The resulting double-layer classifier achieves global Precision and Recall scores of 0.91 and 0.80, respectively

    Towards an Integrated Model of the Mental Lexicon

    Get PDF
    Several models have been proposed attempting to describe the mental lexicon-the abstract organization of words in the human mind. Numerous studies have shown that by representing the mental lexicon as a network, where nodes represent words and edges connect similar words using a metric based on some word feature, a small-world structure is formed. This property, pervasive in many real-world networks, implies processing efficiency and resiliency to node deletion within the system, explaining the need for such a robust network as the mental lexicon. However, each model considered a single word feature at a time, such as semantic or phonological information. Moreover, these studies modeled the mental lexicon as an unweighted graph. In this thesis, I expand upon these works by proposing a model that incorporates several word features into a weighted network. Analyses on this model applied to the English lexicon show that while this model does not exhibit the same small-world characteristics as a weighted graph, by setting a minimum threshold on the weights (reminiscent of action potential thresholds in neural networks), the resulting unweighted counterpart is a small-world network. These results suggest that a more integrated model of the mental lexicon can be adopted while affording the same computational benefits of a small-world network. An increased understanding of the structure of the mental lexicon can provide a stronger foundation for more accurate computational models of speech and text processing and word-learning

    Acquisition of morphological families and derivational series from a machine readable dictionary

    Get PDF
    The paper presents a linguistic and computational model aiming at making the morphological structure of the lexicon emerge from the formal and semantic regularities of the words it contains. The model is word-based. The proposed morphological structure consists of (1) binary relations that connect each headword with words that are morphologically related, and especially with the members of its morphological family and its derivational series, and of (2) the analogies that hold between the words. The model has been tested on the lexicon of French using the TLFi machine readable dictionary.Comment: proceedings of the 6th D\'ecembrette

    Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language

    Full text link
    This article presents a measure of semantic similarity in an IS-A taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach. The article presents algorithms that take advantage of taxonomic similarity in resolving syntactic and semantic ambiguity, along with experimental results demonstrating their effectiveness
    • …
    corecore