3,247 research outputs found

    Evaluating Example-based Pose Estimation: Experiments on the HumanEva Sets

    Get PDF
    We present an example-based approach to pose recovery, using histograms of oriented gradients as image descriptors. Tests on the HumanEva-I and HumanEva-II data sets provide us insight into the strengths and limitations of an example-based approach. We report mean relative 3D errors of approximately 65 mm per joint on HumanEva-I, and 175 mm on HumanEva-II. We discuss our results using single and multiple views. Also, we perform experiments to assess the algorithm’s generalization to unseen subjects, actions and viewpoints. We plan to incorporate the temporal aspect of human motion analysis to reduce orientation ambiguities, and increase the pose recovery accuracy

    PifPaf: Composite Fields for Human Pose Estimation

    Get PDF
    We propose a new bottom-up method for multi-person 2D human pose estimation that is particularly well suited for urban mobility such as self-driving cars and delivery robots. The new method, PifPaf, uses a Part Intensity Field (PIF) to localize body parts and a Part Association Field (PAF) to associate body parts with each other to form full human poses. Our method outperforms previous methods at low resolution and in crowded, cluttered and occluded scenes thanks to (i) our new composite field PAF encoding fine-grained information and (ii) the choice of Laplace loss for regressions which incorporates a notion of uncertainty. Our architecture is based on a fully convolutional, single-shot, box-free design. We perform on par with the existing state-of-the-art bottom-up method on the standard COCO keypoint task and produce state-of-the-art results on a modified COCO keypoint task for the transportation domain.Comment: CVPR 201

    Heterogeneous hand gesture recognition using 3D dynamic skeletal data

    Get PDF
    International audienceHand gestures are the most natural and intuitive non-verbal communication medium while interacting with a computer, and related research efforts have recently boosted interest. Additionally, the identifiable features of the hand pose provided by current commercial inexpensive depth cameras can be exploited in various gesture recognition based systems, especially for Human-Computer Interaction. In this paper, we focus our attention on 3D dynamic gesture recognition systems using the hand pose information. Specifically, we use the natural structure of the hand topology-called later hand skeletal data-to extract effective hand kinematic descriptors from the gesture sequence. Descriptors are then encoded in a statistical and temporal representation using respectively a Fisher kernel and a multi-level temporal pyramid. A linear SVM classifier can be applied directly on the feature vector computed over the whole presegmented gesture to perform the recognition. Furthermore, for early recognition from continuous stream, we introduced a prior gesture detection phase achieved using a binary classifier before the final gesture recognition. The proposed approach is evaluated on three hand gesture datasets containing respectively 10, 14 and 25 gestures with specific challenging tasks. Also, we conduct an experiment to assess the influence of depth-based hand pose estimation on our approach. Experimental results demonstrate the potential of the proposed solution in terms of hand gesture recognition and also for a low-latency gesture recognition. Comparative results with state-of-the-art methods are reported

    Computationally efficient deformable 3D object tracking with a monocular RGB camera

    Get PDF
    182 p.Monocular RGB cameras are present in most scopes and devices, including embedded environments like robots, cars and home automation. Most of these environments have in common a significant presence of human operators with whom the system has to interact. This context provides the motivation to use the captured monocular images to improve the understanding of the operator and the surrounding scene for more accurate results and applications.However, monocular images do not have depth information, which is a crucial element in understanding the 3D scene correctly. Estimating the three-dimensional information of an object in the scene using a single two-dimensional image is already a challenge. The challenge grows if the object is deformable (e.g., a human body or a human face) and there is a need to track its movements and interactions in the scene.Several methods attempt to solve this task, including modern regression methods based on Deep NeuralNetworks. However, despite the great results, most are computationally demanding and therefore unsuitable for several environments. Computational efficiency is a critical feature for computationally constrained setups like embedded or onboard systems present in robotics and automotive applications, among others.This study proposes computationally efficient methodologies to reconstruct and track three-dimensional deformable objects, such as human faces and human bodies, using a single monocular RGB camera. To model the deformability of faces and bodies, it considers two types of deformations: non-rigid deformations for face tracking, and rigid multi-body deformations for body pose tracking. Furthermore, it studies their performance on computationally restricted devices like smartphones and onboard systems used in the automotive industry. The information extracted from such devices gives valuable insight into human behaviour a crucial element in improving human-machine interaction.We tested the proposed approaches in different challenging application fields like onboard driver monitoring systems, human behaviour analysis from monocular videos, and human face tracking on embedded devices

    Learning-based 3D human motion capture and animation synthesis

    Get PDF
    Realistic virtual human avatar is a crucial element in a wide range of applications, from 3D animated movies to emerging AR/VR technologies. However, producing a believable 3D motion for such avatars is widely known to be a challenging task. A traditional 3D human motion generation pipeline consists of several stages, each requiring expensive equipment and skilled human labor to perform, limiting its usage beyond the entertainment industry despite its massive potential benefits. This thesis attempts to explore some alternative solutions to reduce the complexity of the traditional 3D animation pipeline. To this end, it presents several novel ways to perform 3D human motion capture, synthesis, and control. Specifically, it focuses on using learning-based methods to bypass the critical bottlenecks of the classical animation approach. First, a new 3D pose estimation method from in-the-wild monocular images is proposed, eliminating the need for a multi-camera setup in the traditional motion capture system. Second, it explores several data-driven designs to achieve a believable 3D human motion synthesis and control that can potentially reduce the need for manual animation. In particular, the problem of speech-driven 3D gesture synthesis is chosen as the case study due to its uniquely ambiguous nature. The improved motion generation quality is achieved by introducing a novel adversarial objective that rates the difference between real and synthetic data. A novel motion generation strategy is also introduced by combining a classical database search algorithm with a powerful deep learning method, resulting in a greater motion control variation than the purely predictive counterparts. Furthermore, this thesis also contributes a new way of collecting a large-scale 3D motion dataset through the use of learning-based monocular estimations methods. This result demonstrates the promising capability of learning-based monocular approaches and shows the prospect of combining these learning-based modules into an integrated 3D animation framework. The presented learning-based solutions open the possibility of democratizing the traditional 3D animation system that can be enabled using low-cost equipment, e.g., a single RGB camera. Finally, this thesis also discusses the potential further integration of these learning-based approaches to enhance 3D animation technology.Realistische virtuelle menschliche Avatare sind ein entscheidendes Element in einer Vielzahl von Anwendungen, von 3D-Animationsfilmen bis hin zu neuen AR/VR-Technologien. Die Erzeugung glaubwürdiger Bewegungen solcher Avatare in drei Dimensionen ist bekanntermaßen eine herausfordernde Aufgabe. Traditionelle Pipelines zur Erzeugung menschlicher 3D-Bewegungen bestehen aus mehreren Stufen, die jede für sich genommen teure Ausrüstung und den Einsatz von Expertenwissen erfordern und daher trotz ihrer enormen potenziellen Vorteile abseits der Unterhaltungsindustrie nur eingeschränkt verwendbar sind. Diese Arbeit untersucht verschiedene Alternativen um die Komplexität der traditionellen 3D-Animations-Pipeline zu reduzieren. Zu diesem Zweck stellt sie mehrere neuartige Möglichkeiten zur Erfassung, Synthese und Steuerung humanoider 3D-Bewegungen vor. Sie konzentriert sich auf die Verwendung lernbasierter Methoden, um kritische Teile des klassischen Animationsansatzes zu überbrücken: Zunächst wird eine neue 3D-Pose-Estimation-Methode für monokulare Bilder vorgeschlagen, um die Notwendigkeit mehrerer Kameras im traditionellen Motion-Capture-Ansatz zu beseitigen. Des Weiteren untersucht die Arbeit mehrere datengetriebene Ansätze zur Synthese und Steuerung glaubwürdiger humanoider 3D-Bewegungen, die möglicherweise den Bedarf an manueller Animation reduzieren können. Als Fallstudie wird, aufgrund seiner einzigartig mehrdeutigen Natur, das Problem der sprachgetriebenen 3D-Gesten-Synthese untersucht. Die Verbesserungen in der Qualität der erzeugten Bewegungen wird durch eine neuartige Kostenfunktion erreicht, die den Unterschied zwischen realen und synthetischen Daten bewertet. Außerdem wird eine neue Strategie zur Bewegungssynthese beschrieben, die eine klassische Datenbanksuche mit einer leistungsstarken Deep-Learning-Methode kombiniert, was zu einer größeren Variation der Bewegungssteuerung führt, als rein lernbasierte Verfahren sie bieten. Ein weiterer Beitrag dieser Dissertation besteht in einer neuen Methode zum Aufbau eines großen Datensatzes dreidimensionaler Bewegungen, auf Grundlage lernbasierter monokularer Pose-Estimation- Methoden. Dies demonstriert die vielversprechenden Möglichkeiten lernbasierter monokularer Methoden und lässt die Aussicht erkennen, diese lernbasierten Module zu einem integrierten 3D-Animations- Framework zu kombinieren. Die in dieser Arbeit vorgestellten lernbasierten Lösungen eröffnen die Möglichkeit, das traditionelle 3D-Animationssystem auch mit kostengünstiger Ausrüstung, wie z.B. einer einzelnen RGB-Kamera verwendbar zu machen. Abschließend diskutiert diese Arbeit auch die mögliche weitere Integration dieser lernbasierten Ansätze zur Verbesserung der 3D-Animationstechnologie

    Hand gesture recognition with jointly calibrated Leap Motion and depth sensor

    Get PDF
    Novel 3D acquisition devices like depth cameras and the Leap Motion have recently reached the market. Depth cameras allow to obtain a complete 3D description of the framed scene while the Leap Motion sensor is a device explicitly targeted for hand gesture recognition and provides only a limited set of relevant points. This paper shows how to jointly exploit the two types of sensors for accurate gesture recognition. An ad-hoc solution for the joint calibration of the two devices is firstly presented. Then a set of novel feature descriptors is introduced both for the Leap Motion and for depth data. Various schemes based on the distances of the hand samples from the centroid, on the curvature of the hand contour and on the convex hull of the hand shape are employed and the use of Leap Motion data to aid feature extraction is also considered. The proposed feature sets are fed to two different classifiers, one based on multi-class SVMs and one exploiting Random Forests. Different feature selection algorithms have also been tested in order to reduce the complexity of the approach. Experimental results show that a very high accuracy can be obtained from the proposed method. The current implementation is also able to run in real-time

    Computationally efficient deformable 3D object tracking with a monocular RGB camera

    Get PDF
    182 p.Monocular RGB cameras are present in most scopes and devices, including embedded environments like robots, cars and home automation. Most of these environments have in common a significant presence of human operators with whom the system has to interact. This context provides the motivation to use the captured monocular images to improve the understanding of the operator and the surrounding scene for more accurate results and applications.However, monocular images do not have depth information, which is a crucial element in understanding the 3D scene correctly. Estimating the three-dimensional information of an object in the scene using a single two-dimensional image is already a challenge. The challenge grows if the object is deformable (e.g., a human body or a human face) and there is a need to track its movements and interactions in the scene.Several methods attempt to solve this task, including modern regression methods based on Deep NeuralNetworks. However, despite the great results, most are computationally demanding and therefore unsuitable for several environments. Computational efficiency is a critical feature for computationally constrained setups like embedded or onboard systems present in robotics and automotive applications, among others.This study proposes computationally efficient methodologies to reconstruct and track three-dimensional deformable objects, such as human faces and human bodies, using a single monocular RGB camera. To model the deformability of faces and bodies, it considers two types of deformations: non-rigid deformations for face tracking, and rigid multi-body deformations for body pose tracking. Furthermore, it studies their performance on computationally restricted devices like smartphones and onboard systems used in the automotive industry. The information extracted from such devices gives valuable insight into human behaviour a crucial element in improving human-machine interaction.We tested the proposed approaches in different challenging application fields like onboard driver monitoring systems, human behaviour analysis from monocular videos, and human face tracking on embedded devices

    Efficient multi-task based facial landmark and gesture detection in monocular images

    Get PDF
    [EN] The communication between persons includes several channels to exchange information between individuals. The non-verbal communication contains valuable information about the context of the conversation and it is a key element to understand the entire interaction. The facial expressions are a representative example of this kind of non-verbal communication and a valuable element to improve human-machine interaction interfaces. Using images captured by a monocular camera, automatic facial analysis systems can extract facial expressions to improve human-machine interactions. However, there are several technical factors to consider, including possible computational limitations (e.g. autonomous robots), or data throughput (e.g. centralized computation server). Considering the possible limitations, this work presents an efficient method to detect a set of 68 facial feature points and a set of key facial gestures at the same time. The output of this method includes valuable information to understand the context of communication and improve the response of automatic human-machine interaction systems
    • …
    corecore