2,464 research outputs found

    A multilayer network approach for guiding drug repositioning in neglected diseases

    Get PDF
    Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.Fil: Berenstein, Ariel José. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Magariños, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Chernomoretz, Ariel. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Fernandez Aguero, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Gene2DisCo : gene to disease using disease commonalities

    Get PDF
    OBJECTIVE: Finding the human genes co-causing complex diseases, also known as "disease-genes", is one of the emerging and challenging tasks in biomedicine. This process, termed gene prioritization (GP), is characterized by a scarcity of known disease-genes for most diseases, and by a vast amount of heterogeneous data, usually encoded into networks describing different types of functional relationships between genes. In addition, different diseases may share common profiles (e.g. genetic or therapeutic profiles), and exploiting disease commonalities may significantly enhance the performance of GP methods. This work aims to provide a systematic comparison of several disease similarity measures, and to embed disease similarities and heterogeneous data into a flexible framework for gene prioritization which specifically handles the lack of known disease-genes. METHODS: We present a novel network-based method, Gene2DisCo, based on generalized linear models (GLMs) to effectively prioritize genes by exploiting data regarding disease-genes, gene interaction networks and disease similarities. The scarcity of disease-genes is addressed by applying an efficient negative selection procedure, together with imbalance-aware GLMs. Gene2DisCo is a flexible framework, in the sense it is not dependent upon specific types of data, and/or upon specific disease ontologies. RESULTS: On a benchmark dataset composed of nine human networks and 708 medical subject headings (MeSH) diseases, Gene2DisCo largely outperformed the best benchmark algorithm, kernelized score functions, in terms of both area under the ROC curve (0.94 against 0.86) and precision at given recall levels (for recall levels from 0.1 to 1 with steps 0.1). Furthermore, we enriched and extended the benchmark data to the whole human genome and provided the top-ranked unannotated candidate genes even for MeSH disease terms without known annotations

    RANDOM WALK APPLIED TO HETEROGENOUS DRUG-TARGET NETWORKS FOR PREDICTING BIOLOGICAL OUTCOMES

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2016Prediction of unknown drug target interactions from bioassay data is critical not only for the understanding of various interactions but also crucial for the development of new drugs and repurposing of old ones. Conventional methods for prediction of such interactions can be divided into 2D based and 3D based methods. 3D methods are more CPU expensive and require more manual interpretation whereas 2D methods are actually fast methods like machine learning and similarity search which use chemical fingerprints. One of the problems of using traditional machine learning based method to predict drug-target pairs is that it requires a labeled information of true and false interactions. One of the major problems of supervised learning methods is selection on negative samples. Unknown drug target interactions are regarded as false interactions, which may influence the predictive accuracy of the model. To overcome this problem network based methods has become an effective tool in predicting the drug target interactions overcoming the negative sampling problem. In this dissertation study, I will describe traditional machine learning methods and 3D methods of pharmacophore modeling for drug target prediction and will show how these methods work in a drug discovery scenario. I will then introduce a new framework for drug target prediction based on bipartite networks of drug target relations known as Random Walk with Restart (RWR). RWR integrates various networks including drug– drug similarity networks, protein-protein similarity networks and drug- target interaction networks into a heterogeneous network that is capable of predicting novel drug-target relations. I will describe how chemical features for measuring drug-drug similarity do not affect performance in predicting interactions and further show the performance of RWR using an external dataset from ChEMBL database. I will describe about further implementations of RWR approach into multilayered networks consisting of biological data like diseases, tissue based gene expression data, protein- complexes and metabolic pathways to predict associations between human diseases and metabolic pathways which are very crucial in drug discovery. I have further developed a software tool package netpredictor in R (standalone and the web) for unipartite and bipartite networks and implemented network-based predictive algorithms and network properties for drug-target prediction. This package will be described

    Benchmarking network-based gene prioritization methods for cerebral small vessel disease

    Get PDF
    Network-based gene prioritization algorithms are designed to prioritize disease-associated genes based on known ones using biological networks of protein interactions, gene disease associations and other relationships between biological entities. Various algorithms have been developed based on different mechanisms, but it is not obvious which algorithm is optimal for a specific disease. To address this issue, we benchmarked multiple algorithms for their application in cerebral small vessel disease (cSVD). We curated protein-gene interactions (PGI) and gene-disease associations (GDA) from databases and assembled PGI networks and disease-gene heterogenous networks. A screening of algorithms resulted in seven representative algorithms to be benchmarked. Performance of algorithms was assessed using both leave-one-out cross-validation (LOOCV) and external validation with MEGASTROKE genome-wide association study (GWAS). We found that random walk with restart on the heterogeneous network (RWRH) showed best LOOCV performance, with median LOOCV rediscovery rank of 185.5 (out of 19,463 genes). The GenePanda algorithm had most GWAS-confirmable genes in top 200 predictions, while RWRH had best ranks for small vessel stroke associated genes confirmed in GWAS. In conclusion, RWRH has overall better performance for application in cSVD despite its susceptibility to bias caused by degree centrality. Choice of algorithms should be determined before applying to specific disease. Current pure network-based gene prioritization algorithms are unlikely to find novel disease-associated genes that are not associated with known ones. The tools for implementing and benchmarking algorithms have been made available and can be generalized for other diseases

    DomainRBF: a Bayesian regression approach to the prioritization of candidate domains for complex diseases

    Get PDF
    BACKGROUND: Domains are basic units of proteins, and thus exploring associations between protein domains and human inherited diseases will greatly improve our understanding of the pathogenesis of human complex diseases and further benefit the medical prevention, diagnosis and treatment of these diseases. Within a given domain-domain interaction network, we make the assumption that similarities of disease phenotypes can be explained using proximities of domains associated with such diseases. Based on this assumption, we propose a Bayesian regression approach named domainRBF (domain Rank with Bayes Factor) to prioritize candidate domains for human complex diseases. RESULTS: Using a compiled dataset containing 1,614 associations between 671 domains and 1,145 disease phenotypes, we demonstrate the effectiveness of the proposed approach through three large-scale leave-one-out cross-validation experiments (random control, simulated linkage interval, and genome-wide scan), and we do so in terms of three criteria (precision, mean rank ratio, and AUC score). We further show that the proposed approach is robust to the parameters involved and the underlying domain-domain interaction network through a series of permutation tests. Once having assessed the validity of this approach, we show the possibility of ab initio inference of domain-disease associations and gene-disease associations, and we illustrate the strong agreement between our inferences and the evidences from genome-wide association studies for four common diseases (type 1 diabetes, type 2 diabetes, Crohn\u27s disease, and breast cancer). Finally, we provide a pre-calculated genome-wide landscape of associations between 5,490 protein domains and 5,080 human diseases and offer free access to this resource. CONCLUSIONS: The proposed approach effectively ranks susceptible domains among the top of the candidates, and it is robust to the parameters involved. The ab initio inference of domain-disease associations shows strong agreement with the evidence provided by genome-wide association studies. The predicted landscape provides a comprehensive understanding of associations between domains and human diseases
    • …
    corecore