24,195 research outputs found

    Measuring Relations Between Concepts In Conceptual Spaces

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by regions in this space. Our recent mathematical formalization of this framework is capable of representing correlations between different domains in a geometric way. In this paper, we extend our formalization by providing quantitative mathematical definitions for the notions of concept size, subsethood, implication, similarity, and betweenness. This considerably increases the representational power of our formalization by introducing measurable ways of describing relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial text overlap with arXiv:1707.05165, arXiv:1706.0636

    A synthesis of fuzzy rule-based system verification.

    Get PDF
    The verification of fuzzy rule bases for anomalies has received increasing attention these last few years. Many different approaches have been suggested and many are still under investigation. In this paper, we give a synthesis of methods proposed in literature that try to extend the verification of clasical rule bases to the case of fuzzy knowledge modelling, without needing a set of representative input. Within this area of fyzzy V&V we identify two dual lines of thought respectively leading to what is identified as static and dynamic anomaly detection methods. Static anomaly detection essentially tries to use similarity, affinity or matching measures to identify anomalies wihin a fuzzy rule base. It is assumed that the detection methods can be the same as those used in a non-fuzzy environment, except that the formerly mentioned measures indicate the degree of matching of two fuzzy expressions. Dynamic anomaly detection starts from the basic idea that any anomaly within a knowledge representation formalism, i.c. fuzzy if-then rules, can be identified by performing a dynamic analysis of the knowledge system, even without providing special input to the system. By imposing a constraint on the results of inference for an anomaly not to occur, one creates definitions of the anomalies that can only be verified if the inference pocess, and thereby the fuzzy inference operator is involved in the analysis. The major outcome of the confrontation between both approaches is that their results, stated in terms of necessary and/or sufficient conditions for anomaly detection within a particular situation, are difficult to reconcile. The duality between approaces seems to have translated into a duality in results. This article addresses precisely this issue by presenting a theoretical framework which anables us to effectively evaluate the results of both static and dynamic verification theories.

    How to select combination operators for fuzzy expert systems using CRI

    Get PDF
    A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI
    corecore