369 research outputs found

    Sketch-based subspace clustering of hyperspectral images

    Get PDF
    Sparse subspace clustering (SSC) techniques provide the state-of-the-art in clustering of hyperspectral images (HSIs). However, their computational complexity hinders their applicability to large-scale HSIs. In this paper, we propose a large-scale SSC-based method, which can effectively process large HSIs while also achieving improved clustering accuracy compared to the current SSC methods. We build our approach based on an emerging concept of sketched subspace clustering, which was to our knowledge not explored at all in hyperspectral imaging yet. Moreover, there are only scarce results on any large-scale SSC approaches for HSI. We show that a direct application of sketched SSC does not provide a satisfactory performance on HSIs but it does provide an excellent basis for an effective and elegant method that we build by extending this approach with a spatial prior and deriving the corresponding solver. In particular, a random matrix constructed by the Johnson-Lindenstrauss transform is first used to sketch the self-representation dictionary as a compact dictionary, which significantly reduces the number of sparse coefficients to be solved, thereby reducing the overall complexity. In order to alleviate the effect of noise and within-class spectral variations of HSIs, we employ a total variation constraint on the coefficient matrix, which accounts for the spatial dependencies among the neighbouring pixels. We derive an efficient solver for the resulting optimization problem, and we theoretically prove its convergence property under mild conditions. The experimental results on real HSIs show a notable improvement in comparison with the traditional SSC-based methods and the state-of-the-art methods for clustering of large-scale images

    Sketched sparse subspace clustering for large-scale hyperspectral images

    Get PDF
    Sparse subspace clustering (SSC) has achieved the state-of-the-art performance in clustering of hyperspectral images. However, the computational complexity of SSC-based methods is prohibitive for large-scale problems. We propose a large-scale SSC-based method, which processes efficiently large-scale HSIs without sacrificing the clustering accuracy. The proposed approach incorporates sketching of the self-representation dictionary reducing thereby largely the number of optimization variables. In addition, we employ a total variation (TV) regularization of the sparse matrix, resulting in a robust sparse representation. We derive a solver based on the alternating direction method of multipliers (ADMM) for the resulting optimization problem. Experimental results on real data show improvements over the traditional SSC-based methods in terms of accuracy and running time

    Landmark-based large-scale sparse subspace clustering method for hyperspectral images

    Get PDF
    Sparse subspace clustering (SSC) has achieved the state-of-the-art performance in the clustering of hyperspectral images (HSIs). However, the high computational complexity and sensitivity to noise limit its clustering performance. In this paper, we propose a scalable SSC method for the large-scale HSIs, which significantly accelerates the clustering speed of SSC without sacrificing clustering accuracy. A small landmark dictionary is first generated by applying k-means to the original data, which results in the significant reduction of the number of optimization variables in terms of sparse matrix. In addition, we incorporate spatial regularization based on total variation (TV) and improve this way strongly robustness to noise. A landmark-based spectral clustering method is applied to the obtained sparse matrix, which further improves the clustering speed. Experimental results on two real HSIs demonstrate the effectiveness of the proposed method and the superior performance compared to both traditional SSC-based methods and the related large-scale clustering methods

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results
    corecore