7,459 research outputs found

    Using Element Clustering to Increase the Efficiency of XML Schema Matching

    Get PDF
    Schema matching attempts to discover semantic mappings between elements of two schemas. Elements are cross compared using various heuristics (e.g., name, data-type, and structure similarity). Seen from a broader perspective, the schema matching problem is a combinatorial problem with an exponential complexity. This makes the naive matching algorithms for large schemas prohibitively inefficient. In this paper we propose a clustering based technique for improving the efficiency of large scale schema matching. The technique inserts clustering as an intermediate step into existing schema matching algorithms. Clustering partitions schemas and reduces the overall matching load, and creates a possibility to trade between the efficiency and effectiveness. The technique can be used in addition to other optimization techniques. In the paper we describe the technique, validate the performance of one implementation of the technique, and open directions for future research

    AsterixDB: A Scalable, Open Source BDMS

    Full text link
    AsterixDB is a new, full-function BDMS (Big Data Management System) with a feature set that distinguishes it from other platforms in today's open source Big Data ecosystem. Its features make it well-suited to applications like web data warehousing, social data storage and analysis, and other use cases related to Big Data. AsterixDB has a flexible NoSQL style data model; a query language that supports a wide range of queries; a scalable runtime; partitioned, LSM-based data storage and indexing (including B+-tree, R-tree, and text indexes); support for external as well as natively stored data; a rich set of built-in types; support for fuzzy, spatial, and temporal types and queries; a built-in notion of data feeds for ingestion of data; and transaction support akin to that of a NoSQL store. Development of AsterixDB began in 2009 and led to a mid-2013 initial open source release. This paper is the first complete description of the resulting open source AsterixDB system. Covered herein are the system's data model, its query language, and its software architecture. Also included are a summary of the current status of the project and a first glimpse into how AsterixDB performs when compared to alternative technologies, including a parallel relational DBMS, a popular NoSQL store, and a popular Hadoop-based SQL data analytics platform, for things that both technologies can do. Also included is a brief description of some initial trials that the system has undergone and the lessons learned (and plans laid) based on those early "customer" engagements

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Scaling Similarity Joins over Tree-Structured Data

    Get PDF
    Given a large collection of tree-structured objects (e.g., XML documents), the similarity join finds the pairs of objects that are similar to each other, based on a similarity threshold and a tree edit distance measure. The state-of-the-art similarity join methods compare simpler approximations of the objects (e.g., strings), in order to prune pairs that cannot be part of the similarity join result based on distance bounds derived by the approximations. In this paper, we propose a novel similarity join approach, which is based on the dynamic decomposition of the tree objects into subgraphs, according to the similarity threshold. Our technique avoids computing the exact distance between two tree objects, if the objects do not share at least one common subgraph. In order to scale up the join, the computed subgraphs are managed in a two-layer index. Our experimental results on real and synthetic data collections show that our approach outperforms the state-of-the-art methods by up to an order of magnitude.published_or_final_versio

    Structure and content semantic similarity detection of eXtensible markup language documents using keys

    Get PDF
    XML (eXtensible Mark-up Language) has become the fundamental standard for efficient data management and exchange. Due to the widespread use of XML for describing and exchanging data on the web, XML-based comparison is central issues in database management and information retrieval. In fact, although many heterogeneous XML sources have similar content, they may be described using different tag names and structures. This work proposes a series of algorithms for detection of structural and content changes among XML data. The first is an algorithm called XDoI (XML Data Integration Based on Content and Structure Similarity Using Keys) that clusters XML documents into subtrees using leaf-node parents as clustering points. This algorithm matches subtrees using the key concept and compares unmatched subtrees for similarities in both content and structure. The experimental results show that this approach finds much more accurate matches with or without the presence of keys in the subtrees. A second algorithm proposed here is called XDI-CSSK (a system for detecting xml similarity in content and structure using relational database); it eliminates unnecessary clustering points using instance statistics and a taxonomic analyzer. As the number of subtrees to be compared is reduced, the overall execution time is reduced dramatically. Semantic similarity plays a crucial role in precise computational similarity measures. A third algorithm, called XML-SIM (structure and content semantic similarity detection using keys) is based on previous work to detect XML semantic similarity based on structure and content. This algorithm is an improvement over XDI-CSSK and XDoI in that it determines content similarity based on semantic structural similarity. In an experimental evaluation, it outperformed previous approaches in terms of both execution time and false positive rates. Information changes periodically; therefore, it is important to be able to detect changes among different versions of an XML document and use that information to identify semantic similarities. Finally, this work introduces an approach to detect XML similarity and thus to join XML document versions using a change detection mechanism. In this approach, subtree keys still play an important role in order to avoid unnecessary subtree comparisons within multiple versions of the same document. Real data sets from bibliographic domains demonstrate the effectiveness of all these algorithms --Abstract, page iv-v

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    An efficient and scalable algorithm for clustering XML documents by structure

    Full text link

    Schema matching for transforming structured documents

    Full text link
    Structured document content reuse is the problem of restructuring and translating data structured under a source schema into an instance of a target schema. A notion closely tied with structured document reuse is that of structure transformations. Schema matching is a critical strep in structured document transformations. Manual matching is expensive and error-prone. It is therefore important to develop techniques to automate the matching process and thus the transformation process. In this paper, we contributed in both understanding the matching problem in the context of structured document transformations and developing matching methods those output serves as the basis for the automatic generation of transformation scripts
    • …
    corecore