30,307 research outputs found

    Black-Box Data-efficient Policy Search for Robotics

    Get PDF
    The most data-efficient algorithms for reinforcement learning (RL) in robotics are based on uncertain dynamical models: after each episode, they first learn a dynamical model of the robot, then they use an optimization algorithm to find a policy that maximizes the expected return given the model and its uncertainties. It is often believed that this optimization can be tractable only if analytical, gradient-based algorithms are used; however, these algorithms require using specific families of reward functions and policies, which greatly limits the flexibility of the overall approach. In this paper, we introduce a novel model-based RL algorithm, called Black-DROPS (Black-box Data-efficient RObot Policy Search) that: (1) does not impose any constraint on the reward function or the policy (they are treated as black-boxes), (2) is as data-efficient as the state-of-the-art algorithm for data-efficient RL in robotics, and (3) is as fast (or faster) than analytical approaches when several cores are available. The key idea is to replace the gradient-based optimization algorithm with a parallel, black-box algorithm that takes into account the model uncertainties. We demonstrate the performance of our new algorithm on two standard control benchmark problems (in simulation) and a low-cost robotic manipulator (with a real robot).Comment: Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017; Code at http://github.com/resibots/blackdrops; Video at http://youtu.be/kTEyYiIFGP

    A Dynamic Embedding Model of the Media Landscape

    Full text link
    Information about world events is disseminated through a wide variety of news channels, each with specific considerations in the choice of their reporting. Although the multiplicity of these outlets should ensure a variety of viewpoints, recent reports suggest that the rising concentration of media ownership may void this assumption. This observation motivates the study of the impact of ownership on the global media landscape and its influence on the coverage the actual viewer receives. To this end, the selection of reported events has been shown to be informative about the high-level structure of the news ecosystem. However, existing methods only provide a static view into an inherently dynamic system, providing underperforming statistical models and hindering our understanding of the media landscape as a whole. In this work, we present a dynamic embedding method that learns to capture the decision process of individual news sources in their selection of reported events while also enabling the systematic detection of large-scale transformations in the media landscape over prolonged periods of time. In an experiment covering over 580M real-world event mentions, we show our approach to outperform static embedding methods in predictive terms. We demonstrate the potential of the method for news monitoring applications and investigative journalism by shedding light on important changes in programming induced by mergers and acquisitions, policy changes, or network-wide content diffusion. These findings offer evidence of strong content convergence trends inside large broadcasting groups, influencing the news ecosystem in a time of increasing media ownership concentration

    An evolutionary complex systems decision-support tool for the management of operations

    Get PDF
    Purpose - The purpose of this is to add both to the development of complex systems thinking in the subject area of operations and production management and to the limited number of applications of computational models and simulations from the science of complex systems. The latter potentially offer helpful decision-support tools for operations and production managers. Design/methodology/approach - A mechanical engineering firm was used as a case study where a combined qualitative and quantitative methodological approach was employed to extract the required data from four senior managers. Company performance measures as well as firm technologies, practices and policies, and their relation and interaction with one another, were elicited. The data were subjected to an evolutionary complex systems (ECS) model resulting in a series of simulations. Findings - The findings highlighted the effects of the diversity in management decision making on the firm's evolutionary trajectory. The CEO appeared to have the most balanced view of the firm, closely followed by the marketing and research and development managers. The manufacturing manager's responses led to the most extreme evolutionary trajectory where the integrity of the entire firm came into question particularly when considering how employees were utilised. Research limitations/implications - By drawing directly from the opinions and views of managers, rather than from logical "if-then" rules and averaged mathematical representations of agents that characterise agent-based and other self-organisational models, this work builds on previous applications by capturing a micro-level description of diversity that has been problematical both in theory and application. Practical implications - This approach can be used as a decision-support tool for operations and other managers providing a forum with which to explore: the strengths, weaknesses and consequences of different decision-making capacities within the firm; the introduction of new manufacturing technologies, practices and policies; and the different evolutionary trajectories that a firm can take. Originality/value - With the inclusion of "micro-diversity", ECS modelling moves beyond the self-organisational models that populate the literature but has not as yet produced a great many practical simulation results. This work is a step in that direction

    Fast Damage Recovery in Robotics with the T-Resilience Algorithm

    Full text link
    Damage recovery is critical for autonomous robots that need to operate for a long time without assistance. Most current methods are complex and costly because they require anticipating each potential damage in order to have a contingency plan ready. As an alternative, we introduce the T-resilience algorithm, a new algorithm that allows robots to quickly and autonomously discover compensatory behaviors in unanticipated situations. This algorithm equips the robot with a self-model and discovers new behaviors by learning to avoid those that perform differently in the self-model and in reality. Our algorithm thus does not identify the damaged parts but it implicitly searches for efficient behaviors that do not use them. We evaluate the T-Resilience algorithm on a hexapod robot that needs to adapt to leg removal, broken legs and motor failures; we compare it to stochastic local search, policy gradient and the self-modeling algorithm proposed by Bongard et al. The behavior of the robot is assessed on-board thanks to a RGB-D sensor and a SLAM algorithm. Using only 25 tests on the robot and an overall running time of 20 minutes, T-Resilience consistently leads to substantially better results than the other approaches
    corecore