2,422 research outputs found

    Advancing Medical Technology for Motor Impairment Rehabilitation: Tools, Protocols, and Devices

    Get PDF
    Excellent motor control skills are necessary to live a high-quality life. Activities such as walking, getting dressed, and feeding yourself may seem mundane, but injuries to the neuromuscular system can render these tasks difficult or even impossible to accomplish without assistance. Statistics indicate that well over 100 million people are affected by diseases or injuries, such as stroke, Parkinson’s Disease, Multiple Sclerosis, Cerebral Palsy, peripheral nerve injury, spinal cord injury, and amputation, that negatively impact their motor abilities. This wide array of injuries presents a challenge to the medical field as optimal treatment paradigms are often difficult to implement due to a lack of availability of appropriate assessment tools, the inability for people to access the appropriate medical centers for treatment, or altogether gaps in technology for treating the underlying impairments causing the disability. Addressing each of these challenges will improve the treatment of movement impairments, provide more customized and continuous treatment to a larger number of patients, and advance rehabilitative and assistive device technology. In my research, the key approach was to develop tools to assess and treat upper extremity movement impairment. In Chapter 2.1, I challenged a common biomechanical[GV1] modeling technique of the forearm. Comparing joint torque values through inverse dynamics simulation between two modeling platforms, I discovered that representing the forearm as a single cylindrical body was unable to capture the inertial parameters of a physiological forearm which is made up of two segments, the radius and ulna. I split the forearm segment into a proximal and distal segment, with the rationale being that the inertial parameters of the proximal segment could be tuned to those of the ulna and the inertial parameters of the distal segment could be tuned to those of the radius. Results showed a marked increase in joint torque calculation accuracy for those degrees of freedom that are affected by the inertial parameters of the radius and ulna. In Chapter 2.2, an inverse kinematic upper extremity model was developed for joint angle calculations from experimental motion capture data, with the rationale being that this would create an easy-to-use tool for clinicians and researchers to process their data. The results show accurate angle calculations when compared to algebraic solutions. Together, these chapters provide easy-to-use models and tools for processing movement assessment data. In Chapter 3.1, I developed a protocol to collect high-quality movement data in a virtual reality task that is used to assess hand function as part of a Box and Block Test. The goal of this chapter is to suggest a method to not only collect quality data in a research setting but can also be adapted for telehealth and at home movement assessment and rehabilitation. Results indicate that the data collected in this protocol are good and the virtual nature of this approach can make it a useful tool for continuous, data driven care in clinic or at home. In Chapter 3.2 I developed a high-density electromyography device for collecting motor unit action potentials of the arm. Traditional surface electromyography is limited by its ability to obtain signals from deep muscles and can also be time consuming to selectively place over appropriate muscles. With this high-density approach, muscle coverage is increased, placement time is decreased, and deep muscle activity can potentially be collected due to the high-density nature of the device[GV2] . Furthermore, the high-density electromyography device is built as a precursor to a high-density electromyography-electrical stimulation device for functional electrical stimulation. The customizable nature of the prototype in Chapter 3.2 allows for the implementation both recording and stimulating electrodes. Furthermore, signal results show that the electromyography data obtained from the device are of high quality and are correlated with gold standard surface electromyography sensors. One key factor in a device that can record and then stimulate based on the information from the recorded signals is an accurate movement intent decoder. High-quality movement decoders have been designed by closed-loop device controllers in the past, but they still struggle when the user interacts with objects of varying weight due to underlying alterations in muscle signals. In Chapter 4, I investigate this phenomenon by administering an experiment where participants perform a Box and Block Task with objects of 3 different weights, 0 kg, 0.02 kg, and 0.1 kg. Electromyography signals of the participants right arm were collected and co-contraction levels between antagonistic muscles were analyzed to uncover alterations in muscle forces and joint dynamics. Results indicated contraction differences between the conditions and also between movement stages (contraction levels before grabbing the block vs after touching the block) for each condition. This work builds a foundation for incorporating object weight estimates into closed-loop electromyography device movement decoders. Overall, we believe the chapters in this thesis provide a basis for increasing availability to movement assessment tools, increasing access to effective movement assessment and rehabilitation, and advance the medical device and technology field

    CGAMES'2009

    Get PDF

    Exploring the Multi-touch Interaction Design Space for 3D Virtual Objects to Support Procedural Training Tasks

    Get PDF
    Multi-touch interaction has the potential to be an important input method for realistic training in 3D environments. However, multi-touch interaction has not been explored much in 3D tasks, especially when trying to leverage realistic, real-world interaction paradigms. A systematic inquiry into what realistic gestures look like for 3D environments is required to understand how users translate real-world motions to multi-touch motions. Once those gestures are defined, it is important to see how we can leverage those gestures to enhance training tasks. In order to explore the interaction design space for 3D virtual objects, we began by conducting our first study exploring user-defined gestures. From this work we identified a taxonomy and design guidelines for 3D multi-touch gestures and how perspective view plays a role in the chosen gesture. We also identified a desire to use pressure on capacitive touch screens. Since the best way to implement pressure still required some investigation, our second study evaluated two different pressure estimation techniques in two different scenarios. Once we had a taxonomy of gestures we wanted to examine whether implementing these realistic multi-touch interactions in a training environment provided training benefits. Our third study compared multi-touch interaction to standard 2D mouse interaction and to actual physical training and found that multi-touch interaction performed better than 2D mouse and as well as physical training. This study showed us that multi-touch training using a realistic gesture set can perform as well as training on the actual apparatus. One limitation of the first training study was that the user had constrained perspective to allow for us to focus on isolating the gestures. Since users can change their perspective in a real life training scenario and therefore gain spatial knowledge of components, we wanted to see if allowing users to alter their perspective helped or hindered training. Our final study compared training with Unconstrained multi-touch interaction, Constrained multi-touch interaction, or training on the actual physical apparatus. Results show that the Unconstrained multi-touch interaction and the Physical groups had significantly better performance scores than the Constrained multi-touch interaction group, with no significant difference between the Unconstrained multi-touch and Physical groups. Our results demonstrate that allowing users more freedom to manipulate objects as they would in the real world benefits training. In addition to the research already performed, we propose several avenues for future research into the interaction design space for 3D virtual objects that we believe will be of value to researchers and designers of 3D multi-touch training environments

    Human Health Engineering Volume II

    Get PDF
    In this Special Issue on “Human Health Engineering Volume II”, we invited submissions exploring recent contributions to the field of human health engineering, i.e., technology for monitoring the physical or mental health status of individuals in a variety of applications. Contributions could focus on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main parts of the monitoring and control engineering scheme applied to human health applications, namely papers focusing on measuring/sensing physiological variables, papers highlighting health-monitoring applications, and examples of control and process management applications for human health. In comparison to biomedical engineering, we envision that the field of human health engineering will also cover applications for healthy humans (e.g., sports, sleep, and stress), and thus not only contribute to the development of technology for curing patients or supporting chronically ill people, but also to more general disease prevention and optimization of human well-being

    A virtual hand assessment system for efficient outcome measures of hand rehabilitation

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control.Hand rehabilitation is an extremely complex and critical process in the medical rehabilitation field. This is mainly due to the high articulation of the hand functionality. Recent research has focused on employing new technologies, such as robotics and system control, in order to improve the precision and efficiency of the standard clinical methods used in hand rehabilitation. However, the designs of these devices were either oriented toward a particular hand injury or heavily dependent on subjective assessment techniques to evaluate the progress. These limitations reduce the efficiency of the hand rehabilitation devices by providing less effective results for restoring the lost functionalities of the dysfunctional hands. In this project, a novel technological solution and efficient hand assessment system is produced that can objectively measure the restoration outcome and, dynamically, evaluate its performance. The proposed system uses a data glove sensorial device to measure the multiple ranges of motion for the hand joints, and a Virtual Reality system to return an illustrative and safe visual assistance environment that can self-adjust with the subject’s performance. The system application implements an original finger performance measurement method for analysing the various hand functionalities. This is achieved by extracting the multiple features of the hand digits’ motions; such as speed, consistency of finger movements and stability during the hold positions. Furthermore, an advanced data glove calibration method was developed and implemented in order to accurately manipulate the virtual hand model and calculate the hand kinematic movements in compliance with the biomechanical structure of the hand. The experimental studies were performed on a controlled group of 10 healthy subjects (25 to 42 years age). The results showed intra-subject reliability between the trials (average of crosscorrelation ρ = 0.7), inter-subject repeatability across the subject’s performance (p > 0.01 for the session with real objects and with few departures in some of the virtual reality sessions). In addition, the finger performance values were found to be very efficient in detecting the multiple elements of the fingers’ performance including the load effect on the forearm. Moreover, the electromyography measurements, in the virtual reality sessions, showed high sensitivity in detecting the tremor effect (the mean power frequency difference on the right Vextensor digitorum muscle is 176 Hz). Also, the finger performance values for the virtual reality sessions have the same average distance as the real life sessions (RSQ =0.07). The system, besides offering an efficient and quantitative evaluation of hand performance, it was proven compatible with different hand rehabilitation techniques where it can outline the primarily affected parts in the hand dysfunction. It also can be easily adjusted to comply with the subject’s specifications and clinical hand assessment procedures to autonomously detect the classification task events and analyse them with high reliability. The developed system is also adaptable with different disciplines’ involvements, other than the hand rehabilitation, such as ergonomic studies, hand robot control, brain-computer interface and various fields involving hand control

    The Investigation of Motor Primitives During Human Reaching Movements and the Quantification of Post-Stroke Motor Impairment

    Get PDF
    Movement is a complex task, requiring precise and coordinated muscle contractions. The forces and torques produced during multi-segmental movement of the upper limbs in humans, must be controlled, in order for movement to be achieved successfully. Although a critical aspect of everyday life, there remain questions regarding the specific controller used by the central nervous system to govern movement. Furthermore, how this system is affected by neurological injuries such as stroke also remains in question. It was the goal of this thesis to examine the neurological control of movement in healthy individuals and apply these findings to the further investigation of chronically motor impaired stroke patients. Additionally, this work aimed at providing clinicians with a more reliable, easy to use, and inexpensive approach to quantify post-stroke motor impairment

    Is it worthwhile going immersive? : evaluating the performance of virtual simulated stores for shopper research : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Marketing at Massey University, Albany, New Zealand

    Get PDF
    Listed in 2020 Dean's List of Exceptional ThesesAdvances in simulation technology offer the possibility of more authentic shopper environments for virtual store experiments. Criticisms of subjective measures of consumer behavior previously led to the use of test markets or simulated stores for consumer experimental research. As cost implications made such experiments unavailable to the wider market research community, virtual simulated stores (VSSs) were developed as an alternative. However, the adoption of VSSs has been slow as traditional desktop-operated VSSs do not provide an authentic multicategory shopper experience. New simulation technologies offer the opportunity for more immersive and authentic VSS environments. Yet there has been little research on how authenticity of VSSs is impacted by newly available technology such as head-mounted displays, motion tracking, force feedback controllers, and application of place and plausibility cues. Thus, this dissertation asks whether immersive technologies have potential to provide highly authentic VSS environments. Of the many factors that may determine authenticity, this dissertation examines three; participants’ sense of telepresence, the realism of shopper behaviour, and the effects of shopper locomotion alternatives. An immersive VSS incorporating new virtual technologies was specifically designed and built for this research. Three studies were undertaken. The first compared perceived telepresence and usability between a desktop-operated VSS and an equivalent immersive walk-around VSS. The second examined the authenticity of shopper behaviour in the immersive walk-around VSS by comparing observed shopping patterns to those previously reported in the marketing literature. The third tested whether walk-around locomotion was necessary for authenticity, or whether a simpler teleportation method would result in equivalent shopper behaviour and emotions. Results showed that immersive VSS systems are preferable to traditional desktop-operated systems with regards to telepresence and usability. Further, authentic behavioural patterns can be found in immersive walk-around store experiments, including plausibility of private label shares, pack inspection times, shelf-height effects and impulse purchases. Lastly, there were no differences in shopper emotions and purchase behaviour between walk-around locomotion and controller-based instant teleportation, implying that the teleportation technique can be used, thereby reducing the required physical footprint for immersive VSS simulations. Collectively, the findings imply that marketers who study in-store shopper behavior can be confident using immersive VSS for their research as opposed to outdated desktop VSS technology

    Developing a Virtual Reality- and Lean-based Training Platform for Productivity Improvement of Scaffolding Installation in Liquefied Natural Gas Industry

    Get PDF
    This thesis aims to integrate lean and work postures to simultaneously improve productivity and health and safety and develop a lean- and virtual reality-based platform for effective education and training in scaffolding installation in turnaround maintenance projects. It represents an effort to help on-site workers in the Liquefied Natural Gas industry identify waste activities and achieve a balanced improvement in both productivity and health and safety through improved training in a virtual platform
    • 

    corecore