5,679 research outputs found

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    SNIF TOOL - Sniffing for Patterns in Continuous Streams

    Get PDF
    Recent technological advances in sensor networks and mobile devices give rise to new challenges in processing of live streams. In particular, time-series sequence matching, namely, the similarity matching of live streams against a set of predefined pattern sequence queries, is an important technology for a broad range of domains that include monitoring the spread of hazardous waste and administering network traffic. In this thesis, I use the time critical application of monitoring of fire growth in an intelligent building as my motivating example. Various measures and algorithms have been established in the current literature for similarity of static time-series data. Matching continuous data poses the following new challenges: 1) fluctuations in stream characteristics, 2) real-time requirements of the application, 3) limited system resources, and, 4) noisy data. Thus the matching techniques proposed for static time-series are mostly not applicable for live stream matching. In this thesis, I propose a new generic framework, henceforth referred to as the n-Snippet Indices Framework (in short, SNIF), for discovering the similarity between a live stream and pattern sequences. The framework is composed of two key phases: (1.) Off-line preprocessing phase: where the pattern sequences are processed offline and stored into an approximate 2-level index structure; and (2.) On-line live stream matching phase: streaming time-series (or the live stream) is on-the-fly matched against the indexed pattern sequences. I introduce the concept of n-Snippets for numeric data as the unit for matching. The insight is to match small snippets of the live stream against prefixes of the patterns and maintain them in succession. Longer the pattern prefixes identified to be similar to the live stream, better the confirmation of the match. Thus, the live stream matching is performed in two levels of matching: bag matching for matching snippets and order checking for maintaining the lengths of the match. I propose four variations of matching algorithms that allow the user the capability to choose between the two conflicting characteristics of result accuracy versus response time. The effectiveness of SNIF to detect patterns has been thoroughly tested through extensive experimental evaluations using the continuous query engine CAPE as platform. The evaluations made use of real datasets from multiple domains, including fire monitoring, chlorine monitoring and sensor networks. Moreover, SNIF is demonstrated to be tolerant to noisy datasets

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Data semantic enrichment for complex event processing over IoT Data Streams

    Get PDF
    This thesis generalizes techniques for processing IoT data streams, semantically enrich data with contextual information, as well as complex event processing in IoT applications. A case study for ECG anomaly detection and signal classification was conducted to validate the knowledge foundation

    Mining frequent sequential patterns in data streams using SSM-algorithm.

    Get PDF
    Frequent sequential mining is the process of discovering frequent sequential patterns in data sequences as found in applications like web log access sequences. In data stream applications, data arrive at high speed rates in a continuous flow. Data stream mining is an online process different from traditional mining. Traditional mining algorithms work on an entire static dataset in order to obtain results while data stream mining algorithms work with continuously arriving data streams. With rapid change in technology, there are many applications that take data as continuous streams. Examples include stock tickers, network traffic measurements, click stream data, data feeds from sensor networks, and telecom call records. Mining frequent sequential patterns on data stream applications contend with many challenges such as limited memory for unlimited data, inability of algorithms to scan infinitely flowing original dataset more than once and to deliver current and accurate result on demand. This thesis proposes SSM-Algorithm (sequential stream mining-algorithm) that delivers frequent sequential patterns in data streams. The concept of this work came from FP-Stream algorithm that delivers time sensitive frequent patterns. Proposed SSM-Algorithm outperforms FP-Stream algorithm by the use of a hash based and two efficient tree based data structures. All incoming streams are handled dynamically to improve memory usage. SSM-Algorithm maintains frequent sequences incrementally and delivers most current result on demand. The introduced algorithm can be deployed to analyze e-commerce data where the primary source of the data is click stream data. (Abstract shortened by UMI.)Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .M668. Source: Masters Abstracts International, Volume: 44-03, page: 1409. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Accelerating Event Stream Processing in On- and Offline Systems

    Get PDF
    Due to a growing number of data producers and their ever-increasing data volume, the ability to ingest, analyze, and store potentially never-ending streams of data is a mission-critical task in today's data processing landscape. A widespread form of data streams are event streams, which consist of continuously arriving notifications about some real-world phenomena. For example, a temperature sensor naturally generates an event stream by periodically measuring the temperature and reporting it with measurement time in case of a substantial change to the previous measurement. In this thesis, we consider two kinds of event stream processing: online and offline. Online refers to processing events solely in main memory as soon as they arrive, while offline means processing event data previously persisted to non-volatile storage. Both modes are supported by widely used scale-out general-purpose stream processing engines (SPEs) like Apache Flink or Spark Streaming. However, such engines suffer from two significant deficiencies that severely limit their processing performance. First, for offline processing, they load the entire stream from non-volatile secondary storage and replay all data items into the associated online engine in order of their original arrival. While this naturally ensures unified query semantics for on- and offline processing, the costs for reading the entire stream from non-volatile storage quickly dominate the overall processing costs. Second, modern SPEs focus on scaling out computations across the nodes of a cluster, but use only a fraction of the available resources of individual nodes. This thesis tackles those problems with three different approaches. First, we present novel techniques for the offline processing of two important query types (windowed aggregation and sequential pattern matching). Our methods utilize well-understood indexing techniques to reduce the total amount of data to read from non-volatile storage. We show that this improves the overall query runtime significantly. In particular, this thesis develops the first index-based algorithms for pattern queries expressed with the Match_Recognize clause, a new and powerful language feature of SQL that has received little attention so far. Second, we show how to maximize resource utilization of single nodes by exploiting the capabilities of modern hardware. Therefore, we develop a prototypical shared-memory CPU-GPU-enabled event processing system. The system provides implementations of all major event processing operators (filtering, windowed aggregation, windowed join, and sequential pattern matching). Our experiments reveal that regarding resource utilization and processing throughput, such a hardware-enabled system is superior to hardware-agnostic general-purpose engines. Finally, we present TPStream, a new operator for pattern matching over temporal intervals. TPStream achieves low processing latency and, in contrast to sequential pattern matching, is easily parallelizable even for unpartitioned input streams. This results in maximized resource utilization, especially for modern CPUs with multiple cores

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures
    corecore