79 research outputs found

    Improving processor efficiency by exploiting common-case behaviors of memory instructions

    Get PDF
    Processor efficiency can be described with the help of a number of  desirable effects or metrics, for example, performance, power, area, design complexity and access latency. These metrics serve as valuable tools used in designing new processors and they also act as  effective standards for comparing current processors. Various factors impact the efficiency of modern out-of-order processors and one important factor is the manner in which instructions are processed through the processor pipeline. In this dissertation research, we study the impact of load and store instructions (collectively known as memory instructions) on processor efficiency,  and show how to improve efficiency by exploiting common-case or  predictable patterns in the behavior of memory instructions. The memory behavior patterns that we focus on in our research are the predictability of memory dependences, the predictability in data forwarding patterns,   predictability in instruction criticality and conservativeness in resource allocation and deallocation policies. We first design a scalable  and high-performance memory dependence predictor and then apply accurate memory dependence prediction to improve the efficiency of the fetch engine of a simultaneous multi-threaded processor. We then use predictable data forwarding patterns to eliminate power-hungry  hardware in the processor with no loss in performance.  We then move to  studying instruction criticality to improve  processor efficiency. We study the behavior of critical load instructions  and propose applications that can be optimized using  predictable, load-criticality  information. Finally, we explore conventional techniques for allocation and deallocation  of critical structures that process memory instructions and propose new techniques to optimize the same.  Our new designs have the potential to reduce  the power and the area required by processors significantly without losing  performance, which lead to efficient designs of processors.Ph.D.Committee Chair: Loh, Gabriel H.; Committee Member: Clark, Nathan; Committee Member: Jaleel, Aamer; Committee Member: Kim, Hyesoon; Committee Member: Lee, Hsien-Hsin S.; Committee Member: Prvulovic, Milo

    Transactions Chasing Scalability and Instruction Locality on Multicores

    Get PDF
    For several decades, online transaction processing (OLTP) has been one of the main server applications that drives innovations in the data management ecosystem, and in turn the database and computer architecture communities. Recent hardware trends oblige software to overcome two major challenges against systems scalability on modern multicore processors: (1) exploiting the abundant thread-level parallelism across cores and (2) taking advantage of the implicit parallelism within a core. The traditional design of the OLTP systems, however, faces inherent scalability problems due to its tightly coupled components. In addition, OLTP cannot exploit the full capability of the micro-architectural resources of modern processors because of the conventional scheduling decisions that ignore the cache locality for transactions. As a result, today’s commonly used server hardware remains largely underutilized leading to a huge waste of hardware resources and energy. .... In this thesis, we first identify the unbounded critical sections of traditional OLTP systems as the main enemy of thread-level parallelism. We design an alternative shared-everything system based on physiological partitioning (PLP) to eliminate the unbounded critical sections while providing an infrastructure for low-cost dynamic repartitioning and without introducing high-cost distributed transactions. Then, we demonstrate that L1 instruction cache stalls are the dominant factor leading to underutilization in the commodity servers. However, we also observe that independently of their high-level functionality, transactions running in parallel on a multicore system share significant amount of common instructions. By adaptively spreading the execution of a transaction over multiple cores through thread migration or multiplexing transactions on one core, we enable both an ample L1 instruction cache capacity for a transaction and reuse of common instructions across concurrent transactions. .... As the hardware demands more from the software to exploit the complexity and parallelism it offers in the multicore era, this work would change the way we traditionally schedule transactions. Instead of viewing a transaction as a single big task, we split it into smaller parts that can exploit data and instruction locality through careful dynamic scheduling decisions. The methods this thesis presents are not only specific to OLTP systems, but they can also benefit other types of applications that have concurrent requests executing a series of actions from a predefined set and face similar scalability problems on emerging hardware

    Improving the efficiency of multicore systems through software and hardware cooperation

    Get PDF
    Increasing processors' clock frequency has traditionally been one of the largest drivers of performance improvements for computing systems. In the first half of the 2000s, however, it became clear that continuing to increase frequency was not a viable solution anymore. Power consumption and power density became prohibitively costly, and processor manufacturers moved to multicore designs. This new paradigm introduced multiple challenges not present in single-threaded processors. Applications running on multicore systems share different resources such as the cache hierarchy and the memory bus. Resource sharing occurs at much finer degree when cores support multithreading as well. In this case, applications share the processor¿s pipeline too. Running multiple applications on the same processor allows for better utilization of its resources¿which otherwise may just lie idle if an application does not use them. But sharing resources may create interferences between applications running on the system. While the degree of these interferences depends on the nature of the applications, it is typically desirable to reduce them in order to improve efficiency. Most currently available processors expose a set of sensors and actuators that software can use to monitor and control resource sharing among the applications running on a system. But it is typically up to end users to analyze their workloads of interest and to manually use the actuators provided by the processor. Because of this, in many cases the different mechanisms for controlling resource sharing are simply left unused. In this thesis we present different techniques that rely on software/hardware interaction to monitor and improve application interference¿and thus improve system efficiency. First we conduct a quantitative study showing the benefits of hardware/software cooperation on system efficiency. Then we narrow our focus on a given hardware knob: data prefetching. Specifically we develop and evaluate several adaptive solutions for improving the efficiency of hardware data prefetching on multicore systems. The impact of the solutions presented in this thesis, however, goes beyond the particular case of data prefetching. They serve as illustrative examples for developing software/hardware cooperation schemes that enable the efficient sharing of resources in multicore systems.L'increment de la freqüència dels processadors ha estat tradicionalment un dels majors responsables de la millora de rendiment dels sistemes de computació. Tanmateix, a la primera meitat del segle XXI es va fer evident que continuar incrementant la freqüència ja no era una solució viable. El consum de potència i la densitat de potència van esdevenir massa costosos, i els dissenyadors de processadors van adoptar dissenys "multicore". Aquest nou paradigma va introduir molts reptes que no eren presents als processadors "single-threaded". Les aplicacions que s'executen a processadors multicore comparteixen diferent recursos tal i com la jerarquia de "cache" i el bus de memòria. En processadors que suporten "multi-threading" encara comparteixen més recursos: en aquest cas les aplicacions també comparteixen els recursos del "pipeline". Executar diverses aplicacions en un processador permet una millor utilització dels seus recursos, que d'altra forma podrien no tenir cap utilitat si l'aplicació en execució no els utilitzés. Compartir recursos, però, pot crear interferències entre les aplicacions executant-se al sistema. Encara que el nivell d'aquestes interferències depèn de les aplicacions que s'executen conjuntament, normalment és desitjable reduir-les per tal de millorar la eficiència. Molts dels processadors actuals exposen un conjunt sensors i actuadors que el software pot utilitzar per supervisar i controlar la compartició de recursos entre les diferents aplicacions executant-se al sistema. En general és responsabilitat dels usuaris analitzar les aplicacions del seu interès i després configurar els actuadors de forma manual. Això suposa una dificultat afegida i per aquest motiu, en molts casos els diferents mecanismes per controlar com es comparteixen els recursos senzillament no es fan servir. En aquesta tesi, presentem diferents tècniques basades en la interacció del software i el hardware per supervisar i reduir la interferència entre aplicacions, i d'aquesta forma millorar la eficiència del sistema. Primer es presenta un estudi quantitatiu que mostra els beneficis de la cooperació entre software i hardware en la eficiència del sistema. Després el focus es centra en un actuador en concret: "data prefetching". En concret, desenvolupem i avaluem diferents solucions adaptatives per millorar la eficiència de hardware data prefetching a sistemes multicore. L'impacte de les solucions presentades a aquesta tesi, però, no es limiten a aquest cas concret. Al contrari, serveixen com exemples il·lustratius per desenvolupar tècniques de cooperació software i hardware que permetin compartir els recursos en sistemes multicore de forma eficient. La compartició de recursos en un processador és un factor crucial que afecta significativament a la seva eficiència. Però, altres nivells d'un sistema de computació també comparteixen recursos. En grans instal·lacions de computació com els "datacenters", les aplicacions també poden compartir altres recursos com la xarxa o l'emmagatzemament. Com a cas d'estudi considerem el disseny d'un sistema d'un sistema de comptabilitat d'energia basat en la cooperació entre el software i el hardware per a grans instal·lacions de computació. En aquest context, explorem diverses alternatives per als sensors i actuadors que es requereixen, així com també analitzem els diferents aspectes claus en el disseny d'un sistema d'aquestes característiques

    On benchmarking of deep learning systems: software engineering issues and reproducibility challenges

    Get PDF
    Since AlexNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, Deep Learning (and Machine Learning/AI in general) gained an exponential interest. Nowadays, their adoption spreads over numerous sectors, like automotive, robotics, healthcare and finance. The ML advancement goes in pair with the quality improvement delivered by those solutions. However, those ameliorations are not for free: ML algorithms always require an increasing computational power, which pushes computer engineers to develop new devices capable of coping with this demand for performance. To foster the evolution of DSAs, and thus ML research, it is key to make it easy to experiment and compare them. This may be challenging since, even if the software built around these devices simplifies their usage, obtaining the best performance is not always straightforward. The situation gets even worse when the experiments are not conducted in a reproducible way. Even though the importance of reproducibility for the research is evident, it does not directly translate into reproducible experiments. In fact, as already shown by previous studies regarding other research fields, also ML is facing a reproducibility crisis. Our work addresses the topic of reproducibility of ML applications. Reproducibility in this context has two aspects: results reproducibility and performance reproducibility. While the reproducibility of the results is mandatory, performance reproducibility cannot be neglected because high-performance device usage causes cost. To understand how the ML situation is regarding reproducibility of performance, we reproduce results published for the MLPerf suite, which seems to be the most used machine learning benchmark. Because of the wide range of devices and frameworks used in different benchmark submissions, we focus on a subset of accuracy and performance results submitted to the MLPerf Inference benchmark, presenting a detailed analysis of the difficulties a scientist may find when trying to reproduce such a benchmark and a possible solution using our workflow tool for experiment reproducibility: PROVA!. We designed PROVA! to support the reproducibility in traditional HPC experiments, but we will show how we extended it to be used as a 'driver' for MLPerf benchmark applications. The PROVA! driver mode allows us to experiment with different versions of the MLPerf Inference benchmark switching among different hardware and software combinations and compare them in a reproducible way. In the last part, we will present the results of our reproducibility study, demonstrating the importance of having a support tool to reproduce and extend original experiments getting deeper knowledge about performance behaviours

    Cycle-accurate modeling of multicore processors on FPGAs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 169-176).We present a novel modeling methodology which enables the generation of a high-performance, cycle-accurate simulator from a cycle-level specification of the target design. We describe Arete, a full-system multicore processor simulator, developed using our modeling methodology. We provide details on Arete's resource-efficient and high-performance implementation on multiple FPGA platforms, and the architectural experiments performed using it. We present clear evidence that the use of simplified models in architectural studies can lead to wrong conclusions. Through two experiments performed using both cycle-accurate and simplified models, we show that on one hand there are substantial quantitative and qualitative differences in results, and on the other, the results match quite well.by Asif Imtiaz Khan.Ph.D

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    On the Use of Migration to Stop Illicit Channels

    Get PDF
    Side and covert channels (referred to collectively as illicit channels) are an insidious affliction of high security systems brought about by the unwanted and unregulated sharing of state amongst processes. Illicit channels can be effectively broken through isolation, which limits the degree by which processes can interact. The drawback of using isolation as a general mitigation against illicit channels is that it can be very wasteful when employed naively. In particular, permanently isolating every tenant of a public cloud service to its own separate machine would completely undermine the economics of cloud computing, as it would remove the advantages of consolidation. On closer inspection, it transpires that only a subset of a tenant's activities are sufficiently security sensitive to merit strong isolation. Moreover, it is not generally necessary to maintain isolation indefinitely, nor is it given that isolation must always be procured at the machine level. This work builds on these observations by exploring a fine-grained and hierarchical model of isolation, where fractions of a machine can be isolated dynamically using migration. Using different units of isolation allows a system to isolate processes from each other with a minimum of over-allocated resources, and having a dynamic and reconfigurable model enables isolation to be procured on-demand. The model is then realised as an implemented framework that allows the fine-grained provisioning of units of computation, managing migrations at the core, virtual CPU, process group, process/container and virtual machine level. Use of this framework is demonstrated in detecting and mitigating a machine-wide covert channel, and in implementing a multi-level moving target defence. Finally, this work describes the extension of post-copy live migration mechanisms to allow temporary virtual machine migration. This adds the ability to isolate a virtual machine on a short term basis, which subsequently allows migrations to happen at a higher frequency and with fewer redundant memory transfers, and also creates the opportunity of time-sharing a particular physical machine's features amongst a set of tenants' virtual machines

    Ontology of music performance variation

    Get PDF
    Performance variation in rhythm determines the extent that humans perceive and feel the effect of rhythmic pulsation and music in general. In many cases, these rhythmic variations can be linked to percussive performance. Such percussive performance variations are often absent in current percussive rhythmic models. The purpose of this thesis is to present an interactive computer model, called the PD-103, that simulates the micro-variations in human percussive performance. This thesis makes three main contributions to existing knowledge: firstly, by formalising a new method for modelling percussive performance; secondly, by developing a new compositional software tool called the PD-103 that models human percussive performance, and finally, by creating a portfolio of different musical styles to demonstrate the capabilities of the software. A large database of recorded samples are classified into zones based upon the vibrational characteristics of the instruments, to model timbral variation in human percussive performance. The degree of timbral variation is governed by principles of biomechanics and human percussive performance. A fuzzy logic algorithm is applied to analyse current and first-order sample selection in order to formulate an ontological description of music performance variation. Asynchrony values were extracted from recorded performances of three different performance skill levels to create \timing fingerprints" which characterise unique features to each percussionist. The PD-103 uses real performance timing data to determine asynchrony values for each synthesised note. The spectral content of the sample database forms a three-dimensional loudness/timbre space, intersecting instrumental behaviour with music composition. The reparameterisation of the sample database, following the analysis of loudness, spectral flatness, and spectral centroid, provides an opportunity to explore the timbral variations inherent in percussion instruments, to creatively explore dimensions of timbre. The PD-103 was used to create a music portfolio exploring different rhythmic possibilities with a focus on meso-periodic rhythms common to parts of West Africa, jazz drumming, and electroacoustic music. The portfolio also includes new timbral percussive works based on spectral features and demonstrates the central aim of this thesis, which is the creation of a new compositional software tool that integrates human percussive performance and subsequently extends this model to different genres of music
    corecore