77 research outputs found

    Unsupervised Feature Selection with Adaptive Structure Learning

    Full text link
    The problem of feature selection has raised considerable interests in the past decade. Traditional unsupervised methods select the features which can faithfully preserve the intrinsic structures of data, where the intrinsic structures are estimated using all the input features of data. However, the estimated intrinsic structures are unreliable/inaccurate when the redundant and noisy features are not removed. Therefore, we face a dilemma here: one need the true structures of data to identify the informative features, and one need the informative features to accurately estimate the true structures of data. To address this, we propose a unified learning framework which performs structure learning and feature selection simultaneously. The structures are adaptively learned from the results of feature selection, and the informative features are reselected to preserve the refined structures of data. By leveraging the interactions between these two essential tasks, we are able to capture accurate structures and select more informative features. Experimental results on many benchmark data sets demonstrate that the proposed method outperforms many state of the art unsupervised feature selection methods

    Development of Features for Recognition of Handwritten Odia Characters

    Get PDF
    In this thesis, we propose four different schemes for recognition of handwritten atomic Odia characters which includes forty seven alphabets and ten numerals. Odia is the mother tongue of the state of Odisha in the republic of India. Optical character recognition (OCR) for many languages is quite matured and OCR systems are already available in industry standard but, for the Odia language OCR is still a challenging task. Further, the features described for other languages can’t be directly utilized for Odia character recognition for both printed and handwritten text. Thus, the prime thrust has been made to propose features and utilize a classifier to derive a significant recognition accuracy. Due to the non-availability of a handwritten Odia database for validation of the proposed schemes, we have collected samples from individuals to generate a database of large size through a digital note maker. The database consists of a total samples of 17, 100 (150 × 2 × 57) collected from 150 individuals at two different times for 57 characters. This database has been named Odia handwritten character set version 1.0 (OHCS v1.0) and is made available in http://nitrkl.ac.in/Academic/Academic_Centers/Centre_For_Computer_Vision.aspx for the use of researchers. The first scheme divides the contour of each character into thirty segments. Taking the centroid of the character as base point, three primary features length, angle, and chord-to-arc-ratio are extracted from each segment. Thus, there are 30 feature values for each primary attribute and a total of 90 feature points. A back propagation neural network has been employed for the recognition and performance comparisons are made with competent schemes. The second contribution falls in the line of feature reduction of the primary features derived in the earlier contribution. A fuzzy inference system has been employed to generate an aggregated feature vector of size 30 from 90 feature points which represent the most significant features for each character. For recognition, a six-state hidden Markov model (HMM) is employed for each character and as a consequence we have fifty-seven ergodic HMMs with six-states each. An accuracy of 84.5% has been achieved on our dataset. The third contribution involves selection of evidence which are the most informative local shape contour features. A dedicated distance metric namely, far_count is used in computation of the information gain values for possible segments of different lengths that are extracted from whole shape contour of a character. The segment, with highest information gain value is treated as the evidence and mapped to the corresponding class. An evidence dictionary is developed out of these evidence from all classes of characters and is used for testing purpose. An overall testing accuracy rate of 88% is obtained. The final contribution deals with the development of a hybrid feature derived from discrete wavelet transform (DWT) and discrete cosine transform (DCT). Experimentally it has been observed that a 3-level DWT decomposition with 72 DCT coefficients from each high-frequency components as features gives a testing accuracy of 86% in a neural classifier. The suggested features are studied in isolation and extensive simulations has been carried out along with other existing schemes using the same data set. Further, to study generalization behavior of proposed schemes, they are applied on English and Bangla handwritten datasets. The performance parameters like recognition rate and misclassification rate are computed and compared. Further, as we progress from one contribution to the other, the proposed scheme is compared with the earlier proposed schemes

    A Survey on Deep Semi-supervised Learning

    Full text link
    Deep semi-supervised learning is a fast-growing field with a range of practical applications. This paper provides a comprehensive survey on both fundamentals and recent advances in deep semi-supervised learning methods from model design perspectives and unsupervised loss functions. We first present a taxonomy for deep semi-supervised learning that categorizes existing methods, including deep generative methods, consistency regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Then we offer a detailed comparison of these methods in terms of the type of losses, contributions, and architecture differences. In addition to the past few years' progress, we further discuss some shortcomings of existing methods and provide some tentative heuristic solutions for solving these open problems.Comment: 24 pages, 6 figure

    Automatic signature verification system

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we explore dynamic signature verification systems. Unlike other signature models, we use genuine signatures in this project as they are more appropriate in real world applications. Signature verification systems are typical examples of biometric devices that use physical and behavioral characteristics to verify that a person really is who he or she claims to be. Other popular biometric examples include fingerprint scanners and hand geometry devices. Hand written signatures have been used for some time to endorse financial transactions and legal contracts although little or no verification of signatures is done. This sets it apart from the other biometrics as it is well accepted method of authentication. Until more recently, only hidden Markov models were used for model construction. Ongoing research on signature verification has revealed that more accurate results can be achieved by combining results of multiple models. We also proposed to use combinations of multiple single variate models instead of single multi variate models which are currently being adapted by many systems. Apart from these, the proposed system is an attractive way for making financial transactions more secure and authenticate electronic documents as it can be easily integrated into existing transaction procedures and electronic communication

    Novel Deep Learning Techniques For Computer Vision and Structure Health Monitoring

    Get PDF
    This thesis proposes novel techniques in building a generic framework for both the regression and classification tasks in vastly different applications domains such as computer vision and civil engineering. Many frameworks have been proposed and combined into a complex deep network design to provide a complete solution to a wide variety of problems. The experiment results demonstrate significant improvements of all the proposed techniques towards accuracy and efficiency

    Multi-view Representation Learning for Unifying Languages, Knowledge and Vision

    Get PDF
    The growth of content on the web has raised various challenges, yet also provided numerous opportunities. Content exists in varied forms such as text appearing in different languages, entity-relationship graph represented as structured knowledge and as a visual embodiment like images/videos. They are often referred to as modalities. In many instances, the different amalgamation of modalities co-exists to complement each other or to provide consensus. Thus making the content either heterogeneous or homogeneous. Having an additional point of view for each instance in the content is beneficial for data-driven learning and intelligent content processing. However, despite having availability of such content. Most advancements made in data-driven learning (i.e., machine learning) is by solving tasks separately for the single modality. The similar endeavor was not shown for the challenges which required input either from all or subset of them. In this dissertation, we develop models and techniques that can leverage multiple views of heterogeneous or homogeneous content and build a shared representation for aiding several applications which require a combination of modalities mentioned above. In particular, we aim to address applications such as content-based search, categorization, and generation by providing several novel contributions. First, we develop models for heterogeneous content by jointly modeling diverse representations emerging from two views depicting text and image by learning their correlation. To be specific, modeling such correlation is helpful to retrieve cross-modal content. Second, we replace the heterogeneous content with homogeneous to learn a common space representation for content categorization across languages. Furthermore, we develop models that take input from both homogeneous and heterogeneous content to facilitate the construction of common space representation from more than two views. Specifically, representation is used to generate one view from another. Lastly, we describe a model that can handle missing views, and demonstrate that the model can generate missing views by utilizing external knowledge. We argue that techniques the models leverage internally provide many practical benefits and lot of immediate value applications. From the modeling perspective, our contributed model design in this thesis can be summarized under the phrase Multi-view Representation Learning( MVRL ). These models are variations and extensions of shallow statistical and deep neural networks approaches that can jointly optimize and exploit all views of the input content arising from different independent representations. We show that our models advance state of the art, but not limited to tasks such as cross-modal retrieval, cross-language text classification, image-caption generation in multiple languages and caption generation for images containing unseen visual object categories
    corecore