753 research outputs found

    Neuroelectronic interfacing with cultured multielectrode arrays toward a cultured probe

    Get PDF
    Efficient and selective electrical stimulation and recording of neural activity in peripheral, spinal, or central pathways requires multielectrode arrays at micrometer scale. ¿Cultured probe¿ devices are being developed, i.e., cell-cultured planar multielectrode arrays (MEAs). They may enhance efficiency and selectivity because neural cells have been grown over and around each electrode site as electrode-specific local networks. If, after implantation, collateral sprouts branch from a motor fiber (ventral horn area) and if they can be guided and contacted to each ¿host¿ network, a very selective and efficient interface will result. Four basic aspects of the design and development of a cultured probe, coated with rat cortical or dorsal root ganglion neurons, are described. First, the importance of optimization of the cell-electrode contact is presented. It turns out that impedance spectroscopy, and detailed modeling of the electrode-cell interface, is a very helpful technique, which shows whether a cell is covering an electrode and how strong the sealing is. Second, the dielectrophoretic trapping method directs cells efficiently to desired spots on the substrate, and cells remain viable after the treatment. The number of cells trapped is dependent on the electric field parameters and the occurrence of a secondary force, a fluid flow (as a result of field-induced heating). It was found that the viability of trapped cortical cells was not influenced by the electric field. Third, cells must adhere to the surface of the substrate and form networks, which are locally confined, to one electrode site. For that, chemical modification of the substrate and electrode areas with various coatings, such as polyethyleneimine (PEI) and fluorocarbon monolayers promotes or inhibits adhesion of cells. Finally, it is shown how PEI patterning, by a stamping technique, successfully guides outgrowth of collaterals from a neonatal rat lumbar spinal cord explant, after six days in cultur

    Extracellular electrical signals in a neuron-surface junction: model of heterogeneous membrane conductivity

    Full text link
    Signals recorded from neurons with extracellular planar sensors have a wide range of waveforms and amplitudes. This variety is a result of different physical conditions affecting the ion currents through a cellular membrane. The transmembrane currents are often considered by macroscopic membrane models as essentially a homogeneous process. However, this assumption is doubtful, since ions move through ion channels, which are scattered within the membrane. Accounting for this fact, the present work proposes a theoretical model of heterogeneous membrane conductivity. The model is based on the hypothesis that both potential and charge are distributed inhomogeneously on the membrane surface, concentrated near channel pores, as the direct consequence of the inhomogeneous transmembrane current. A system of continuity equations having non-stationary and quasi-stationary forms expresses this fact mathematically. The present work performs mathematical analysis of the proposed equations, following by the synthesis of the equivalent electric element of a heterogeneous membrane current. This element is further used to construct a model of the cell-surface electric junction in a form of the equivalent electrical circuit. After that a study of how the heterogeneous membrane conductivity affects parameters of the extracellular electrical signal is performed. As the result it was found that variation of the passive characteristics of the cell-surface junction, conductivity of the cleft and the cleft height, could lead to different shapes of the extracellular signals

    Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode

    Get PDF
    The electrical contact between a substrate embedded microelectrode and a cultured neuron depends on the geometry of the neuron-electrode interface. Interpretation and improvement of these contacts requires proper modeling of all coupling mechanisms. In literature, it is common practice to model the neuron-electrode contact using lumped circuits in which large simplifications are made in the representation of the interface geometry. In this paper, the finite-element method is used to model the neuron-electrode interface, which permits numerical solutions for a variety of interface geometries. The simulation results offer detailed spatial and temporal information about the combined electrical behavior of extracellular volume, electrode-electrolyte interface and neuronal membrane

    The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics

    Get PDF
    Planar microelectrode arrays (MEAs) are devices that can be used in biomedical and basic in vitro research to provide extracellular electrophysiological information about biological systems at high spatial and temporal resolution. Complementary metal oxide semiconductor (CMOS) is a technology with which MEAs can be produced on a microscale featuring high spatial resolution and excellent signal-to-noise characteristics. CMOS MEAs are specialized for the analysis of complete electrogenic cellular networks at the cellular or subcellular level in dissociated cultures, organotypic cultures, and acute tissue slices; they can also function as biosensors to detect biochemical events. Models of disease or the response of cellular networks to pharmacological compounds can be studied in vitro, allowing one to investigate pathologies, such as cardiac arrhythmias, memory impairment due to Alzheimer's disease, or vision impairment caused by ganglion cell degeneration in the retin

    Patterned Cell Cultures For High Throughput Studies Of Cell Electrophysiology And Drug Screening Applications

    Get PDF
    Over the last decade, the field of tissue and bio-engineering has seen an increase in the development of in vitro high-throughput hybrid systems that can be used to understand cell function and behavior at the cellular and tissue levels. These tools would have a wide array of applications including for implants, drug discovery, and toxicology, as well as for studying cell developmental behavior and as disease models. Currently, there are a limited number of efficient, functional drug screening assays in the pharmacology industry and studies of cell-surface interactions are complicated and invasive. Most cell physiology studies are performed using conventional patch-clamp techniques or random networks cultured on silicon devices such as Microelectrode Arrays (MEAs) and Field Effect transistors (FETs). The objective of this study was to develop high-throughput in vitro platforms that could be used to analyze cell function and their response to various stimuli. Our hypothesis was that by utilizing surface modification to provide external guidance cues for various cell types and by controlling the cell environment in terms of culture conditions, we could develop an in vitro hybrid platform for sensing and testing applications. Such a system would not only give information regarding the surface effects on the growth and behavior of cells for implant development applications, but also allow for the study of vital cell physiology parameters like conduction velocity in cardiomyocytes and synaptic plasticity in neuronal networks. This study outlines the development of these in vitro high throughput systems that have varied applications ranging from tissue engineering to drug development. We have developed a simple and relatively high-throughput method in order to test the physiological effects of varying iii chemical environments on rat embryonic cardiac myocytes in order to model the degradation effects of polymer scaffolds. Our results, using our simple test system, are in agreement with earlier observations that utilized a complex 3D biodegradable scaffold. Thus, surface functionalization with self-assembled monolayers combined with histological/physiological testing could be a relatively high throughput method for biocompatibility studies and for the optimization of the material/tissue interface in tissue engineering. Traditional multielectrode extracellular recording methods were combined with surface patterning of cardiac myocyte monolayers to enhance the information content of the method; for example, to enable the measurement of conduction velocity, refractory period after action potentials or to create a functional reentry model. Two drugs, 1-Heptanol, a gap junction blocker, and Sparfloxacin, a fluoroquinone antibiotic, were tested in this system. 1-Heptanol administration resulted in a marked reduction in conduction velocity, whereas Sparfloxacin caused rapid, irregular and unsynchronized activity, indicating fibrillation. As shown in these experiments, the patterning of cardiac myocyte monolayers increased the information content of traditional multielectrode measurements. Patterning techniques with self-assembled monolayers on microelectrode arrays were also used to study the physiological properties of hippocampal networks with functional unidirectional connectivity, developed to study the mono-synaptic connections found in the dentate gyrus. Results indicate that changes in synaptic connectivity and strength were chemically induced in these patterned hippocampal networks. This method is currently being used for studying long term potentiation at the cellular level. For this purpose, two cell patterns were optimized for cell migration onto the pattern as demonstrated by time lapse studies, and for iv supporting the best pattern formation and cell survival on these networks. The networks formed mature interconnected spiking neurons. In conclusion, this study demonstrates the development and testing of in vitro highthroughput systems that have applications in drug development, understanding disease models and tissue engineering. It can be further developed for use with human cells to have a more predictive value than existing complex, expensive and time consuming methods

    Investigating computational properties of a neurorobotic closed loop system

    Get PDF
    This work arises as an attempt to increase and deepen the knowledge of the encoding method of the information by the nervous system. In particular, this study focuses on computational properties of neuronal cultures grown in vitro. Through a neuro-robotic close-loop system composed of either cortical or hippocampal cultures (plated on micro-electrode arrays) on one side and of a robot controlled by the cultures on the other side, it has been possible to analyze experimental dataopenEmbargo per motivi di segretezza e/o di proprietà dei risultati e/o informazioni sensibil

    A novel Three-Dimensional Micro-Electrode Array for in-vitro electrophysiological applications

    Get PDF
    Microelectrode arrays (MEAs) represent a powerful and popular tool to study in vitro neuronal networks and acute brain slices. The research standard for MEAs is planar or 2D-MEAs, which have been in existence for over 30 years and used for extracellular recording and stimulation from cultured neuronal cells and tissue slices. However, planar MEAs suffer from rapid data attenuation in the z-direction when stimulating/recording from 3D in-vitro neuronal cultures or brain slices. The existing proposed 3D in-vitro neuronal models allow to record the electrophysiological activity of the 3D network only from the bottom layer (i.e. the one directly coupled to the planar MEAs). Thus, to further develop and optimize such 3D neuronal network systems and to study and understand how the 3D neuronal network dynamics changes in different layers of the 3D structure, new three-dimensional microelectrodes arrays (3D-MEAs) are required. Early attempts in this field resulted in interesting integrated approaches toward protruding or spiked 3D-MEAs. Although these first prototypes could be successfully employed with brain slices, the limited heights of the electrodes (up to max 70 \u3bcm) and the peculiar shape of the recording areas made them not an ideal solution for 3D neuronal cultures. Moreover, a convenient and versatile method for the fabrication of multilevel 3D microelectrode arrays has yet to be obtained, due to the usually complicated and expensive designs and a lack of a full compatibility with standard MEAs both in terms of materials and recording area dimensions. To overcome the afore-mentioned challenges, in this work, I present the design, microfabrication, and characterization of a new 3D-MEA composed of pillar-shaped gold 3D structures with heights of more than 100 \u3bcm that can be used, in principle, on every kind of MEA, both custom-made and commercial. I successfully demonstrate the capability and ability of such 3D-MEA to record electrophysiological spontaneous activity from 3D engineered in-vitro neuronal networks and both 4-AP-induced epileptiform-like and electrically-evoked activity from mouse acute brain slices. I also demonstrate how the developed 3D-MEA allows better recording and stimulating conditions while interfacing with acute brain slices as compared to planar electrode arrays and previously reported 3D MEA technologies

    Iridium Oxide Microelectrode Arrays for In Vitro Stimulation of Individual Rat Neurons from Dissociated Cultures

    Get PDF
    We present the first in vitro extracellular stimulation of individual neurons from dissociated cultures with iridium oxide (IrOx) electrodes. Microelectrode arrays with sputtered IrOx films (SIROF) were developed for electrophysiological investigations with electrogenic cells. The microelectrodes were characterized with scanning electron and atomic force microscopy, revealing rough and porous electrodes with enlarged surface areas. As shown by cyclic voltammetry and electrochemical impedance spectroscopy, the large surface area in combination with the good electrochemical properties of SIROF resulted in high charge storage capacity and low electrode impedance. Thus, we could transfer the good properties of IrOx as material for in vivo stimulation electrodes to multi-electrode arrays with electrode diameters as small as 10 μm for in vitro applications. Single rat cortical neurons from dissociated cultures were successfully stimulated to fire action potentials using single or trains of biphasic rectangular voltage-controlled stimulation pulses. The stimulated cell's membrane potential was simultaneously monitored using whole-cell current-clamp recordings. This experimental configuration allowed direct evaluation of the influence of pulse phase sequence, amplitude, and number on the stimulation success ratio and action potential latency. Negative phase first pulses were more effective for extracellular stimulation and caused reduced latency in comparison to positive phase first pulses. Increasing the pulse amplitude also improved stimulation reliability. However, in order to prevent cell or electrode damage, the pulse amplitude is limited to voltages below the threshold for irreversible electrochemical reactions at the electrode. As an alternative to increasing the amplitude, a higher number of stimulation pulses was also shown to increase stimulation success
    corecore