103 research outputs found

    A Multifunctional MEMS Pressure and Temperature Sensor for Harsh Environment Applications

    Get PDF
    The objective of this thesis was to develop a fast-response multifunctional MEMS (Micro Electro Mechanical Systems) sensor for the simultaneous measurement of in-cylinder pressure and temperature in an internal combustion (IC) engine. In a representative IC engine, the pressure and temperature can reach up to about 1.6 MPa and 580 °C, respectively, at the time of injection during the compression stroke. At the peak of the combustion process, the pressure and temperature near the cylinder wall can go beyond 6 MPa and 1000 °C, respectively. Failure of current membrane-based MEMS pressure sensors operating at high temperatures is mainly caused by cross-sensitivity to temperature, which affects the pressure readout. In addition, the slow thermal response of temperature sensors used for such a dynamic application makes real-time sensing within a combustion engine very challenging. While numerous approaches have been taken to address these issues, no MEMS sensor has yet been reported that can carry out real-time measurements of in-cylinder pressure and temperature. The operation of the sensor proposed in this Thesis is based on a new non-planar and flexible multifunctional membrane, which responds to both pressure and temperature variations at the same time. The new design draws from standard membrane-based pressure and thermostatic-based temperature MEMS sensing principles to output two capacitance values. A numerical processing scheme uses these values to create a characteristic sensing plot which then serves to decouple the effects of pressure and temperature variations. This sensing scheme eliminates the effect of cross-sensitivity at high temperatures, while providing a short thermal response time. Thermal, mechanical and electrical aspects of the sensor performance were modeled. First, a semi-analytical thermo-mechanical model, based on classic beam theory, was tailored to the shape of the multifunctional membrane to determine the sensor’s response to pressure and temperature loading. ANSYS® software was used to verify this semi-analytical model against finite element simulations. Then the model was then used to calculate the capacitive outputs of the multifunctional MEMS sensor subjected to in-cylinder pressure and temperature loading during a complete cycle of operation of a typical IC engine as well as to optimize the sensor specifications. Several prototypes of the new sensing mechanism fabricated using the PolyMUMPs® foundry process were tested to verify its thermal behavior up to 125 °C. The experiments were performed using a ceramic heater mounted on a probe station with the device connected to a precision LCR-meter for capacitive readouts. Experimental results show good agreement of the temperature response of the sensor with the ANSYS® finite element simulations. Further simulations of the pressure and temperature response of different configurations of the multifunctional MEMS sensor were carried out. The simulations were performed on an array of 4200 multifunctional devices, each featuring a 0.5 µm thick silicon carbide membrane with an area of 25×25 µm2, connected in parallel shows that the optimized sensor system can provide an average sensitivity to pressure of up to 1.55 fF/KPa (over a pressure range of 0.1-6 MPa) and an average sensitivity to temperature of about 4.62 fF/°C (over a temperature range of 160-1000 °C) with a chip area of approximately 4.5 mm2. Assuming that the accompanying electronics can meaningfully measure a minimum capacitance change of 1 fF, this optimized sensor configuration has the potential to sense a minimum pressure change of less than 1 KPa and a minimum temperature change of less than 0.35 °C over the entire working range of the representative IC engine indicated above. In summary, the new developed multifunctional MEMS sensor is capable of measuring temperature and pressure simultaneously. The unique design of the membrane of the sensor minimizes the effect of cross-sensitivity to temperature of current MEMS pressure sensors and promises a short thermal response time. When materials such as silicon carbide are used for its fabrication, the new sensor may be used for real-time measurement of in-cylinder pressure and temperature in IC engines. Furthermore, a systematic optimization process is utilized to arrive at an optimum sensor design based on both geometry and properties of the sensor fabrication materials. This optimization process can also be used to accommodate other sensor configurations depending on the pressure and temperature ranges being targeted

    Photonic Crystal Directional Coupler Based Optomechanical Sensor

    Get PDF
    An extremely small (6.5×6.5μ6.5\times6.5\mum) optomechanical sensor is proposed that utilizes a photonic crystal (PC) etched onto silicon-on-insulator (SOI) using adapted complimentary metal-oxide-semiconductor fabrication technology. The destructive interference of light with the periodic structure can forbid its propagation inside the crystal across a range of frequencies and can be used to confine light near edge of a PC slab. By placing two PC edges near each other, a directional coupler is formed where light is periodically exchanged between the two waveguides. Wet-etching away the buried oxide residing beneath the photonic crystal directional coupler (PCDC), a membrane is formed. Exerting force on the PCDC alters the separation between the two PC edges and modulates the observed transmission at the coupler outputs. Buckle-mitigating structures are also demonstrated here which relieve the unpredictable compressive stress built into the top silicon layer of SOI during wafer fabrication. The PCDC sensors attempt to overcome some of the shortcomings of existing micromechanical sensors such as area constraints, material restrictions, stiction, and EM interference. PCDC sensors are also highly parallelizable due to their small size and wide optical bandwidth. PCDC sensors are envisaged to be used in microfluidic integration and are capable of 149kPa full scale pressure measurement ranges

    Hybrid sensors using laser targeting

    Get PDF
    Proposed, to the best of our knowledge, is the first extreme environment wireless all-in-one hybrid temperature plus pressure sensor using a remoted thick single crystal Silicon Carbide chip within a pressurized capsule. Analysis and experiments are reported for the pressure aspect of the sensor for pressures up to 40 atms

    Review of Polyimides Used in the Manufacturing of Micro Systems

    Get PDF
    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process

    Light-Addressing and Chemical Imaging Technologies for Electrochemical Sensing

    Get PDF
    Visualizing chemical components in a specimen is an essential technology in many branches of science and practical applications. This book deals with electrochemical imaging techniques based on semiconductor devices with capability of spatially resolved sensing. Two types of such sensing devices have been extensively studied and applied in various fields, i.e., arrayed sensors and light-addressed sensors. An ion-sensitive field-effect transistor (ISFET) array and a charge-coupled device (CCD) ion image sensor are examples of arrayed sensors. They take advantage of semiconductor microfabrication technology to integrate a large number of sensing elements on a single chip, each representing a pixel to form a chemical image. A light-addressable potentiometric sensor (LAPS), on the other hand, has no pixel structure. A chemical image is obtained by raster-scanning the sensor plate with a light beam, which can flexibly define the position and size of a pixel. This light-addressing approach is further applied in other LAPS-inspired methods. Scanning photo-induced impedance microscopy (SPIM) realized impedance mapping and light-addressable electrodes/light-activated electrochemistry (LAE) realized local activation of Faradaic processes. This book includes eight articles on state-of-the-art technologies of light-addressing/chemical imaging devices and their application to biology and materials science

    High Aspect-ratio Biomimetic Hair-like Microstructure Arrays for MEMS Multi-Transducer Platform

    Full text link
    Many emerging applications of sensing microsystems in health care, environment, security and transportation systems require improved sensitivity and selectivity, redundancy, robustness, increased dynamic range, as well as small size, low power and low cost. Providing all of these features in a system consisting of one sensor is not practical or possible. Micro electro mechanical microsystems (MEMS) that combine a large sensor array with signal processing circuits could provide these features. To build such multi-transducer microsystems we get inspiration from “hair”, a structure frequently used in nature. Hair is a simple yet elegant structure that offers many attractive features such as large length to cross-sectional area ratio, large exposed surface area, ability to include different sensing materials, and ability to interact with surrounding media in sophisticated ways. In this thesis, we have developed a microfabrication technology to build 3D biomimetic hair structures for MEMS multi-transducer platform. Direct integration with CMOS will enable signal processing of dense arrays of 100s or 1000s of MEMS transducers within a small chip area. We have developed a new device structure that mimics biological hair. It includes a vertical spring, a proof-mass atop the spring, and high aspect-ratio narrow electrostatic gaps to adjacent electrodes for sensing and actuation. Based on this structure, we have developed three generations of 3D high aspect-ratio, small-footprint, low-noise accelerometers. Arrays of both high-sensitivity capacitive and threshold accelerometers are designed and tested, and they demonstrate extended full-scale detection range and frequency bandwidth. The first-generation capacitive hair accelerometer arrays are based on Silicon-on-Glass (SOG) process utilizing 500 µm thick silicon, achieving a highest sensor density of ~100 sensors/mm2 connected in parallel. Minimum capacitive gap is 5 μm with device height of 400 μm and spring length of 300 μm. A custom-designed Bosch deep-reactive-etching (DRIE) process is developed to etch ultra-deep (> 500 µm) ultra-high aspect-ratio (UHAR) features (AR > 40) with straight sidewalls and reduced undercut across a wide range of feature sizes. A two-gap dry-release process is developed for the second-generation capacitive hair accelerometers. Due to the large device height at full wafer thickness of 1 mm and UHAR capacitive transduction gaps at 2 µm that extend > 200 µm, the accelerometer achieves sub-µg resolution (< 1µg/√Hz) and high sensitivity (1pF/g/mm2), having an area smaller than any previous precision accelerometers with similar performance. Each sensor chip consists of devices with various design parameter to cover a wide range. Bonding with metal interlayers at < 400 °C allows direct integration of these devices on top of CMOS circuits. The third-generation digital threshold hair accelerometer takes advantage of large aspect-ratio of the hair structure and UHAR DRIE structures to provide low noise (< 600 ng/√Hz per mm2 footprint proof-mass due to small contact area) and low power threshold acceleration detection. 16-element (4-bit) and 32-element (5-bit) arrays of threshold devices (total chip area being < 1 cm2) with evenly-spaced threshold gap dimensions from 1 µm to 4 µm as well as with hair spring cross-sectional area from 102 µm to 302 µm are designed to suit specific g-ranges from < 100 mg to 50 g. This hair sensor and sensor array technology is suited for forming MEMS transducer arrays with circuits, including high performance IMUs as well as miniaturized detectors and actuators that require high temporal and spatial resolution, analogous to high-density CMOS imagers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143975/1/yemin_1.pd

    High-resolution 3D printing enabled, minimally invasive fibre optic sensing and imaging probes

    Get PDF
    Minimally invasive surgical procedures have become more favourable to their traditional surgical counterparts due to their reduced risks, faster recovery times and decreased trauma. Despite this, there are still some limitations involved with these procedures, such as the spatial confinement of operating through small incisions and the intrinsic lack of visual or tactile feedback. Specialised tools and imaging equipment are required to overcome these issues. Providing better feedback to surgeons is a key area of research to enhance the outcomes and safety profiles of minimally invasive procedures. This thesis is centred on the development of new microfabrication methods to create novel fibre optic imaging and sensing probes that could ultimately be used for improving the guidance of minimally invasive surgeries. Several themes emerged in this process. The first theme involved the use and optimisation of high-resolution 3D injection of polymers as sacrificial layers onto which parylene-C was deposited. One outcome from this theme was a series of miniaturised parylene-C based membranes to create fibre optic pressure sensors for physiological pressure measurements and for ultrasound reception. The pressure sensor sensitivity was found to vary from 0.02 to 0.14 radians/mmHg, as the thickness of parylene was decreased from 2 to 0.5 μm. The ultrasound receivers were characterised and exhibited a noise equivalent pressure (NEP) value of ~100 Pa (an order of magnitude improvement compared to similarly sized piezoelectric hydrophones). A second theme employed high-resolution 3D printing to create microstructures of polydimethylsiloxane (PDMS) and subsequently formed nanocomposites, to create microscale acoustic hologram structures. This theme included the development of innovative manufacturing processes such as printing directly onto optical fibres, micro moulding and precise deposition which enabled the creation of such devices. These microstructures were investigated for reducing the divergence of photoacoustically-generated ultrasound beams. Taken together, the developments in this thesis pave the way for 3D microfabricated polymer-based fibre optic sensors that could find broad clinical utility in minimally invasive procedures

    Fabrication of suspended plate MEMS resonator by micro-masonry

    Get PDF
    L'impression par transfert, une technique utilisée pour transférer divers matériaux tels que des molécules d'ADN, de la résine photosensible ou des nanofils semi-conducteurs, s'est dernièrement révélée utile pour la réalisation de structures de silicium statiques sous le nom de micro-maçonnerie. L'étude présentée ici explore le potentiel de la technique de micro-maçonnerie pour la fabrication de résonateurs MEMS. Dans ce but, des microplaques de silicium ont été transférées sur des couches d'oxyde avec cavités intégrées à l'aide de timbres de polymère afin de créer des structures de type plaques suspendues. Le comportement dynamique de ces structures passives a été étudié sous pression atmosphérique et sous vide en utilisant une excitation externe par pastille piézo-électrique mais aussi le bruit thermomécanique. Par la suite, des résonateurs MEMS actifs, à actionnement électrostatique et détection capacitive intégrés, ont été fabriqués en utilisant des étapes supplémentaires de fabrication après impression. Ces dispositifs ont été caractérisés sous pression atmosphérique. Les facteurs de qualité intrinsèques des dispositifs fabriqués ont été évalués à 3000, ce qui est suffisant pour les applications de mesure à pression atmosphérique et en milieu liquide. Nous avons démontré que, puisque l'adhérence entre la plaque et l'oxyde est suffisamment forte pour empêcher une diaphonie mécanique entre les différentes cavités d'une même base, plusieurs résonateurs peuvent être facilement réalisés en une seule étape d'impression. Ce travail de thèse montre que la micro-maçonnerie est une technique simple et efficace pour la réalisation de résonateurs MEMS actifs de type plaque à cavité scellée.Lately, transfer printing, a technique that is used to transfer diverse materials such as DNA molecules, photoresist, or semiconductor nanowires, has been proven useful for the fabrication of various static silicon structures under the name micro-masonry. The present study explores the suitability of the micro-masonry technique to fabricate MEMS resonators. To this aim, silicon microplates were transfer-printed by microtip polymer stamps onto dedicated oxide bases with integrated cavities in order to create suspended plate structures. The dynamic behavior of fabricated passive structures was studied under atmospheric pressure and vacuum using both external piezo-actuation and thermomechanical noise. Then, active MEMS resonators with integrated electrostatic actuation and capacitive sensing were fabricated using additional post-processing steps. These devices were fully characterized under atmospheric pressure. The intrinsic Q factor of fabricated devices is in the range of 3000, which is sufficient for practical sensing applications in atmospheric pressure and liquid. We have demonstrated that since the bonding between the plate and the device is rigid enough to prevent mechanical crosstalk between different cavities in the same base, multiple resonators can be conveniently realized in a single printing step. This thesis work shows that micro-masonry is a powerful technique for the simple fabrication of sealed MEMS plate resonators

    Design and fabrication of a flexible membrane ultrasound transducer

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 143-152).Wearable ultrasound sensing could enable novel medical diagnostics by facilitating continuous, real-time, and direct measurement of physiological phenomena, such as blood pressure. Currently, ultrasound is not used in wearable health sensing applications because clinical ultrasound systems are expensive, bulky, and require high operating power. Realizing wearable ultrasound therefore requires significant reductions in cost, size, and power consumption. Manufacturing cost is of particular concern because sensors are frequently incorporated into consumer goods, where cost is a key driver of technology adoption. Toward that goal, this thesis explored the first steps toward the opportunity to fabricate low-cost ultrasound transducers by contact printing. Contact printing was selected because it could be scaled for high-throughput manufacturing, and it could be performed at ambient temperature and pressure. For this thesis, a capacitive microscale ultrasound transducer was fabricated by contact printing a gold-parylene composite flexible membrane onto a silicon chip substrate. Significant challenges with the adhesion between the membrane and the chip were overcome during fabrication process development and a high yield process for the contact printing step was developed. The transducer was characterized for electromechanical performance. The first mode resonant frequency of the transducer was 2.2MHz, with a 2MHz bandwidth, placing it in the range of interest for medical ultrasound applications (typically 1-15MHz). These results demonstrate that flexible membrane ultrasound transducers can be fabricated. Furthermore, they illuminate a path toward wearable ultrasound sensing and more broadly, flexible medical devices.by Megan Johnson Roberts.Ph. D

    Real time measurement of oxygen by integrating a clark sensor with low cost printed circuit board technology and solid electrolyte membrane

    Get PDF
    A prototype of a miniaturized Clark type electrochemical oxygen sensor integrated with a 3D printed in vitro cell culturing platform is designed and developed for the purpose of monitoring the cellular oxygen consumption by the solution flowing through the cultured cells on the platform. Oxygen respiration indicates a cell's metabolic activity, so by measuring a chemical's oxygen content as it passes through a cell chamber, we can measure that chemical's potential effectiveness. This miniature micro sensor is designed and fabricated on a printed circuit board for the first time and integrated with a solid electrolyte membrane and 3D printed cell culturing platform to ensure robustness, low manufacturing cost and good electrical conductivity for sensing. Hence the sensor is aimed at enabling the pharmaceutical industry to rapidly test chemical products on animal and cancer cells; and has been designed to be low cost and suitable for mass production. The presented oxygen sensor configuration consists of two identical series of working, reference and counter microelectrodes. The solid polymer electrolyte membrane, Nafion (perfluorosulfunic acid membrane, DuPont Company) removed requirement for extra humidification and increased the shelf life of the sensor. The sensitivity of the oxygen sensor was tested in different oxygen concentration in gas and liquid states and was calibrated with measurements from a Portable Multi-Gas analyzer and a dissolved oxygen analyzer. The prototype can detect the small changes in oxygen concentration in the range of 0 to 5 μA current and has a response time of less than 5 seconds
    corecore