362,960 research outputs found
Second harmonic generation from strongly coupled localized and propagating phonon-polariton modes
We experimentally investigate second harmonic generation from strongly
coupled localized and propagative phonon polariton modes in arrays of silicon
carbide nanopillars. Our results clearly demonstrate the hybrid nature of the
system's eigenmodes and distinct manifestation of strong coupling in the linear
and nonlinear response. While in linear reflectivity the intensity of the two
strongly-coupled branches is essentially symmetric and well explained by their
respective localized or propagative components, the second harmonic signal
presents a strong asymmetry. Analyzing it in detail, we reveal the importance
of interference effects between the nonlinear polarization terms originating in
the bulk and in the phonon polariton modes, respectively.Comment: 7 pages, 4 figure
Carbon-related defects in Si:C/silicon heterostructures assessed by deep-level transient spectroscopy
This paper reports on a Deep-Level Transient Spectroscopy (DLTS) study of the electrically active defects in similar to 100 nm Si: C stressors, formed by chemical vapor deposition on p-type Czochralski silicon substrates. In addition, the impact of a post-deposition Rapid Thermal Annealing (RTA) at 850 degrees C on the DLT-spectra is investigated. It is shown that close to the surface at least two types of hole traps are present: one kind exhibiting slow hole capture, which may have a partial extended defect nature and a second type of hole trap behaving like a point defect. RTA increases the concentration of both hole traps and, in addition, introduces a point defect at EV + 0.35 eV in the depletion region of the silicon substrate at some distance from the Si: C epi layer. This level most likely corresponds with CiOi-related centers. Finally, a negative feature is found systematically for larger reverse bias pulses, which could point to a response of trap states at the Si: C/silicon hetero-interface
Fabrication and characterization of Silicon Nanowires
In this project work Si nanowires were fabricated on the Si substrate by aqueous method. In this aqueous method Ag is used for electroless chemical etching. The precursors those were taken are AgNO3, HF and H2O2. Si nanowires are fabricated at 55⁰C. The samples were characterized by X-ray diffraction and scanning electron microscope. Result shows morphology of the Si nanowires by scanning electron microscope. X-ray diffraction confirms the phase Si. The XRD analysis confirms the phase of silicon and crystallinity nature of silicon .It is found to be single crystalline with plane (1 0 0).The SEM study shows that the particles were uniform and afterwards the non uniformity arises. At 60 second of electroless deposition, the particles shape became anisotropic. Some of the particles have grown vertically. This kind of non uniform pattern can cause a non uniform distribution of Silicon nanowires. It is confirmed that the the morphology of the nanowires also depends on the resistivity of the wafers. The magnified HRTEM image shows the well-resolved lattice spacing of the silicon nanowire, which depicts the crystalline nature of the silicon nanowires
The classical nature of nuclear spin noise near clock transitions of Bi donors in silicon
Whether a quantum bath can be approximated as classical noise is a
fundamental issue in central spin decoherence and also of practical importance
in designing noise-resilient quantum control. Spin qubits based on bismuth
donors in silicon have tunable interactions with nuclear spin baths and are
first-order insensitive to magnetic noise at so-called clock-transitions (CTs).
This system is therefore ideal for studying the quantum/classical nature of
nuclear spin baths since the qubit-bath interaction strength determines the
back-action on the baths and hence the adequacy of a classical noise model. We
develop a Gaussian noise model with noise correlations determined by quantum
calculations and compare the classical noise approximation to the full quantum
bath theory. We experimentally test our model through dynamical decoupling
sequence of up to 128 pulses, finding good agreement with simulations and
measuring electron spin coherence times approaching one second - notably using
natural silicon. Our theoretical and experimental study demonstrates that the
noise from a nuclear spin bath is analogous to classical Gaussian noise if the
back-action of the qubit on the bath is small compared to the internal bath
dynamics, as is the case close to CTs. However, far from the CTs, the
back-action of the central spin on the bath is such that the quantum model is
required to accurately model spin decoherence.Comment: 5 pages, 3 figure
Fully integrated millimeter-wave CMOS phased arrays
A decade ago, RF CMOS, even at low gigahertz frequencies, was considered an oxymoron by all but the most ambitious and
optimistic. Today, it is a dominating force in most commercial wireless applications (e.g., cellular, WLAN, GPS, BlueTooth, etc.) and has proliferated into areas such as watt level power amplifiers (PA) [1] that have been the undisputed realm of compound semiconductors.
This seemingly ubiquitous embracement of silicon and particularly CMOS is no accident. It stems from the reliable nature of silicon process technologies that make it possible to integrated hundreds of millions of transistors on a single chip without a single device failure, as evident in today’s microprocessors. Applied to microwave and millimeter wave applications, silicon opens the door for a plethora of new topologies, architectures, and applications. This rapid adoption of silicon is further facilitated by one’s ability to integrate a great deal of in situ digital signal processing and calibration [2].
Integration of high-frequency phased-array systems in silicon (e.g., CMOS) promises a future of low-cost radar and gigabit-per-second wireless communication networks. In communication applications, phased array provides an improved signal-to-noise ratio via formation of a beam and reduced interference generation for other users. The practically unlimited number of active and passive devices available on a silicon chip and their extremely tight control and excellent repeatability enable new architectures (e.g., [3]) that are not practical in compound semiconductor module-based approaches.
The feasibility of such approaches can be seen through the discussion of an integrated 24GHz 4-element phased-array transmitter in 0.18μm CMOS [2], capable of beam forming and rapid beam steering for radar applications. On-chip power amplifiers (PA), with integrated 50Ω output matching, make this a fully-integrated transmitter. This CMOS transmitter and the 8-element phased-array SiGe receiver in [5], demonstrate the feasibility of 24GHz phased-array systems in silicon-based processes
Singlet Excited States of Anions with Higher Main Group Elements
Previous studies have shown that dipole-bound excited states exist for
certain small anions. However, valence excited states have been reported for
some closed-shell anions, but those with singlet valence excited states have,
thus far, contained a single silicon atom. This work utilizes high-level
coupled cluster theory previously shown to reproduce excited state energies to
better than 0.1 eV compared with experiment in order to examine the electronic
excited state properties of anions containing silicon and other higher main
group atoms as well as their first row analogues. Of the fourteen anions
involved in this study, nine possess bound excited states of some kind:
CHSN, CH, CCSiH, CCSH, CCNH, CCPH,
BHPH, AlHNH, and AlHPH. Two possess clear valence
states: CCSiH and its first row analogue CH. Substantial mixing
appears to be present in the valence and dipole-bound characters for the first
excited state wavefunctions of many of the systems reporting excited states,
but the mixing is most pronounced with the ammonia borane-like AlHNH,
and AlHPH anions. Inclusion of second row atoms in anions whose
corresponding radical is strongly dipolar increases the likelihood for the
existence of excited states of any kind, but among the systems considered to
date with this methodology, only the nature of group 14 atoms in small,
closed-shell anions has yet been shown to allow valence singlet excited states.Comment: In Press article for Molecular Physics, 34 pages, 2 figures, 2 table
Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential
Using molecular dynamics simulations we study the thermodynamic behavior of a
single-component covalent material described by the recently proposed
Environment-Dependent Interatomic Potential (EDIP). The parameterization of
EDIP for silicon exhibits a range of unusual properties typically found in more
complex materials, such as the existence of two structurally distinct
disordered phases, a density decrease upon melting of the low-temperature
amorphous phase, and negative thermal expansion coefficients for both the
crystal (at high temperatures) and the amorphous phase (at all temperatures).
Structural differences between the two disordered phases also lead to a
first-order transition between them, which suggests the existence of a second
critical point, as is believed to exist for amorphous forms of frozen water.
For EDIP-Si, however, the unusual behavior is associated not only with the open
nature of tetrahedral bonding but also with a competition between four-fold
(covalent) and five-fold (metallic) coordination. The unusual behavior of the
model and its unique ability to simulation the liquid/amorphous transition on
molecular-dynamics time scales make it a suitable prototype for fundamental
studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure
Near-ideal spontaneous photon sources in silicon quantum photonics
While integrated photonics is a robust platform for quantum information
processing, architectures for photonic quantum computing place stringent
demands on high quality information carriers. Sources of single photons that
are highly indistinguishable and pure, that are either near-deterministic or
heralded with high efficiency, and that are suitable for mass-manufacture, have
been elusive. Here, we demonstrate on-chip photon sources that simultaneously
meet each of these requirements. Our photon sources are fabricated in silicon
using mature processes, and exploit a novel dual-mode pump-delayed excitation
scheme to engineer the emission of spectrally pure photon pairs through
intermodal spontaneous four-wave mixing in low-loss spiralled multi-mode
waveguides. We simultaneously measure a spectral purity of ,
a mutual indistinguishably of , and intrinsic
heralding efficiency. We measure on-chip quantum interference with a visibility
of between heralded photons from different sources. These
results represent a decisive step for scaling quantum information processing in
integrated photonics
- …
