365 research outputs found

    Extracting takagi-sugeno fuzzy rules with interpretable submodels via regularization of linguistic modifiers

    Get PDF
    In this paper, a method for constructing Takagi-Sugeno (TS) fuzzy system from data is proposed with the objective of preserving TS submodel comprehensibility, in which linguistic modifiers are suggested to characterize the fuzzy sets. A good property held by the proposed linguistic modifiers is that they can broaden the cores of fuzzy sets while contracting the overlaps of adjoining membership functions (MFs) during identification of fuzzy systems from data. As a result, the TS submodels identified tend to dominate the system behaviors by automatically matching the global model (GM) in corresponding subareas, which leads to good TS model interpretability while producing distinguishable input space partitioning. However, the GM accuracy and model interpretability are two conflicting modeling objectives, improving interpretability of fuzzy models generally degrades the GM performance of fuzzy models, and vice versa. Hence, one challenging problem is how to construct a TS fuzzy model with not only good global performance but also good submodel interpretability. In order to achieve a good tradeoff between GM performance and submodel interpretability, a regularization learning algorithm is presented in which the GM objective function is combined with a local model objective function defined in terms of an extended index of fuzziness of identified MFs. Moreover, a parsimonious rule base is obtained by adopting a QR decomposition method to select the important fuzzy rules and reduce the redundant ones. Experimental studies have shown that the TS models identified by the suggested method possess good submodel interpretability and satisfactory GM performance with parsimonious rule bases. © 2006 IEEE

    Feature Space Modeling for Accurate and Efficient Learning From Non-Stationary Data

    Get PDF
    A non-stationary dataset is one whose statistical properties such as the mean, variance, correlation, probability distribution, etc. change over a specific interval of time. On the contrary, a stationary dataset is one whose statistical properties remain constant over time. Apart from the volatile statistical properties, non-stationary data poses other challenges such as time and memory management due to the limitation of computational resources mostly caused by the recent advancements in data collection technologies which generate a variety of data at an alarming pace and volume. Additionally, when the collected data is complex, managing data complexity, emerging from its dimensionality and heterogeneity, can pose another challenge for effective computational learning. The problem is to enable accurate and efficient learning from non-stationary data in a continuous fashion over time while facing and managing the critical challenges of time, memory, concept change, and complexity simultaneously. Feature space modeling is one of the most effective solutions to address this problem. For non-stationary data, selecting relevant features is even more critical than stationary data due to the reduction of feature dimension which can ensure the best use a computational resource to produce higher accuracy and efficiency by data mining algorithms. In this dissertation, we investigated a variety of feature space modeling techniques to improve the overall performance of data mining algorithms. In particular, we built Relief based feature sub selection method in combination with data complexity iv analysis to improve the classification performance using ovarian cancer image data collected in a non-stationary batch mode. We also collected time series health sensor data in a streaming environment and deployed feature space transformation using Singular Value Decomposition (SVD). This led to reduced dimensionality of feature space resulting in better accuracy and efficiency produced by Density Ration Estimation Method in identifying potential change points in data over time. We have also built an unsupervised feature space modeling using matrix factorization and Lasso Regression which was successfully deployed in conjugate with Relative Density Ratio Estimation to address the botnet attacks in a non-stationary environment. Relief based feature model improved 16% accuracy of Fuzzy Forest classifier. For change detection framework, we observed 9% improvement in accuracy for PCA feature transformation. Due to the unsupervised feature selection model, for 2% and 5% malicious traffic ratio, the proposed botnet detection framework exhibited average 20% better accuracy than One Class Support Vector Machine (OSVM) and average 25% better accuracy than Autoencoder. All these results successfully demonstrate the effectives of these feature space models. The fundamental theme that repeats itself in this dissertation is about modeling efficient feature space to improve both accuracy and efficiency of selected data mining models. Every contribution in this dissertation has been subsequently and successfully employed to capitalize on those advantages to solve real-world problems. Our work bridges the concepts from multiple disciplines ineffective and surprising ways, leading to new insights, new frameworks, and ultimately to a cross-production of diverse fields like mathematics, statistics, and data mining

    Novel hybrid extraction systems for fetal heart rate variability monitoring based on non-invasive fetal electrocardiogram

    Get PDF
    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.Web of Science713178413175

    Active sensor fault tolerant output feedback tracking control for wind turbine systems via T-S model

    Get PDF
    This paper presents a new approach to active sensor fault tolerant tracking control (FTTC) for offshore wind turbine (OWT) described via Takagi–Sugeno (T–S) multiple models. The FTTC strategy is designed in such way that aims to maintain nominal wind turbine controller without any change in both fault and fault-free cases. This is achieved by inserting T–S proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators to be capable to estimate different generators and rotor speed sensors fault for compensation purposes. Due to the dependency of the FTTC strategy on the fault estimation the designed observer has the capability to estimate a wide range of time varying fault signals. Moreover, the robustness of the observer against the difference between the anemometer wind speed measurement and the immeasurable effective wind speed signal has been taken into account. The corrected measurements fed to a T–S fuzzy dynamic output feedback controller (TSDOFC) designed to track the desired trajectory. The stability proof with H∞ performance and D-stability constraints is formulated as a Linear Matrix Inequality (LMI) problem. The strategy is illustrated using a non-linear benchmark system model of a wind turbine offered within a competition led by the companies Mathworks and KK-Electronic

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    A Mathematical Measurement For Korean Text Mining and Its Application

    Get PDF
    Department of Mathematical SciencesIn modern society we are buried beneath an overwhelming amount of text data on the internet. We are less inclined to just surf the web and pass the time. To solve this problem, especially to grasp part and parcel of the text data we are presented, there have been numerous studies on the relationship between text data and the ease of the perception of the text???s meaning. However, most of the studies focused on English text data. Since most research did not take into account the linguistic characters, these same methods are not suitable for Korean text. Some special method is required to analyze Korean text data utilizing the characteristics of Korean. Thus we are proposing a new framework for Korean text mining in various texts via proper mathematical measurements. The framework is constructed with three parts: 1) text summarization 2) text clustering 3) relational text learning. Text summarization is the method of extracting the essential sentences from the text. As a measure of importance, we propose specific formulas which focus on the characteristics of Korean. These formulas will provide the input features for the fuzzy summarization system. However, this method has a significant defect for large data set. The number of the summarized sentences increases with the word count of a particular text. To solve this, we propose using text clustering. This field has been studied for a long time. It has a tradeo??? of accuracy for speed. Considering the syllable features of Asian linguistics, we have designed ???Syllable Vector??? as a new measurement. It has shown remarkable performance as implemented with text clustering, especially for high accuracy and speed through e???ectively reducing dimensions. Thirdly, we considered the relational feature of text data. The above concepts deal with the document itself. That is, text information has an independent relationship between documents. To handle these relations, we designed a new architecture for text learning using neural networks (NN). Recently, the most remarkable work in natural language processing (NLP) is ???word2vec???, which is built with artificial neural networks. Our proposed model has a learning structure of bipartite layers using meta information between text data, with a focus on citation relationships. This structure reflects the latent topic of the text using the quoted information. It can solve the shortcomings of the conventional system based on the term-document matrix.ope

    Development of new methodologies for the weight estimation of aircraft structures

    Get PDF
    The problem of weight estimation in the aerospace industry has been acquiring considerably greater importance in recent years, due to the numerous challenges frequently encountered in the preliminary phases of the design of a new aircraft. This is the stage where it is possible to make design changes without incurring into excessive cost penalties. On the other hand, the knowledge of the design, of the relationships existing between the different variables and their subsequent impact on the final weight of the structure is very limited. As a result, the designer is unable to understand the true effect that individual design decisions will produce on the weight of the structure. In addition to this, new aircraft concepts end up being too conservative, due to the high dependency of current weight estimation methods to historical data and off-the-shelf design solutions. This thesis aims at providing an alternative framework for the weight estimation of aircraft structures at preliminary design stages. By conducting a thorough assessment of current state-of-the-art approaches and tools used in the field, fuzzy logic is presented as an appropriate foundation on which to build an innovative approach to the problem. Different adaptive fuzzy approaches have been used in the development of a methodology which is able to combine an analytical base to the structural design of selected trailing edge components, with substantial knowledge acquisition capabilities for the computation of robust and reliable weight estimates. The final framework allows considerable flexibility in the level of detail of the estimate consistent with the granularity of the input data used. This, combined with an extensive uncertainty analysis through the use of Interval Type-2 fuzzy logic, will provide the designer with the capabilities to understand the impact of error propagation within the model and increase the confidence in the final estimat
    corecore