165 research outputs found

    CUSTOMER EMPOWERMENT STRATEGY AND SHAPING MARKETS IN THE PRODUCTION OD ELECTRICITY

    Get PDF
    A large number of energy companies in the world today a faced with global transformative trends which devastatingly affect their business results. Therefore, energy companies in the world were very slow in investing and adopting renewable energy sources and become significantly overcapacitated by coal and gas fired power plants which are now unprofitabile due to low marginal costs of renewables and their priority dispatching into a power system. Also increasing the share of renewable energy sources in the structure of electricity generation, the decline in primary energy prices (fossil fuels) the stagnation of consuption and the surplus of supply in relation to electricity demand caused a drop in wholesale electricity prices by half compared to 2008. Furthemore, the operation of coal fired power plants is burdened with carbon dioxide emissions. As a result, there has been a significant reduction in revenues, falling stock values andthe collapse of credit rating of many energy companies in the world. This article analyzes the implementation of the strategy of empowering customers and shaping markets that the E.ON Group has carried out as a „response“ to global transformative trends in the energy market environment by which the former company was divided into two less dynamic and more focused companies into a new or conventional energy world. This strengthens the competitiveness of all previous business activities due to stronger focus on the development of necessary skills and process. Furthemore, from on investor perspective it has been shown that the risk profiles associated with conventional energy production differ from those related to the new energy world, ie the activities covered by the business portfolio of the E.ON Group, and the activities covered by the business portfolio of the Uniper Group attract different types of investors

    Steam-Electric Cogeneration in Industry: An Economic and Thermodynamic Analysis

    Get PDF
    The purpose of this thesis is to apply the theoretical frameworks and statistical techniques of economic analysis to an area which has been viewed primarily from a technical, engineering perspective: the simultaneous generation of steam and electricity by industry firms. It improves upon previous studies in two ways. First, it makes an empirical assessment of the importance of market forces in industrial cogeneration decisions. Second, both components of cogeneration behavior -- investment and utilization -- are examined

    Market-value of Renewables in the Young Mexican Power Market

    Get PDF
    Valor de las energías renovables en el joven mercado mexicanoEsta investigación pretende encontrar el efecto que las renovables tienen para reducir el precio de la electricidad en México (“merit-order effect” o “MOE”). Usando datos del 01/enero/2017 al 31/diciembre/2019, se usó un modelo de regresión linear para examinar empíricamente el “MOE”. Los datos muestran un “MOE” de MXN0.10/MWhporMWhderenovables.Escalandoalpromediodegeneracioˊnrenovable,el“MOE”promedioes13.50.10/MWh por MWh de renovables. Escalando al promedio de generación renovable, el “MOE” promedio es 13.5% del precio promedio de la electricidad. Hay evidencia de que el “MOE” no es linear y que es diferente entre la energía eólica y la energía solar. El valor de mercado de las renovables fue solo 93% del resto del sistema. Las partes interesadas deberían diferenciar entre el precio promedio de la electricidad y el precio recibido por cada planta. Conforme el “MOE” se convierta en un parte integral de la evaluación de inversiones, el comportamiento de los inversionistas cambiará, impactando el futuro de la mezcla energética. A mi saber, es el primer estudio del “MOE” en un mercado eléctrico joven y en crecimiento en clima cálido (diferencias fundamentales con investigaciones anteriores).This research aims to find the effect that renewables have to reduce the electricity price (the merit-order effect, “MOE”) in the Mexican electricity market. Using data from January 1st of 2017 to December 31st of 2019, a linear regression model was used to test for empirical evidence of the “MOE”. Results show a “MOE” of MXN0.10/MWh per MWh of renewable generation. Scaling to the average renewable generation, the average “MOE” is 13.5% of the average electricity price. There’s evidence that the “MOE” is non-linear and that is different across wind and solar energy. The market value of renewables was only 93% of the market value of the system. Stakeholders should differentiate the average electricity price from the price received by each power plant. As the “MOE” becomes an integral part of investment assessments, investment behaviour will change, impacting the future of the energy mix. To my knowledge, this is the first “MOE” research regarding a young and growing power market with warm weather (fundamental differences from previous research)

    Feed-In Tarrifs in Turmoil

    Get PDF

    Facilitating distributed generation in Australia - the opportunities and challenges of cogeneration

    Full text link
    Stationary energy, predominately electricity and thermal energy production, is one of the largest sectors of primary energy consumption in industrialised countries. Electrification has delivered economic growth and improved standards of living while thermal energy provides comfort and sustains industrial growth. However, a range of economic, market, technological and environmental issues exist. In Australia, these include declining energy productivity and increasing energy prices, changing demand and usage patterns, accommodating emerging forms of electricity production and contribution to long-term climate change. Solutions to these issues include adoption of a mix of technical, regulatory and investmentrelated initiatives. In particular, the adoption of decentralised energy technologies, principally gas-fired cogeneration (also known as Combined Heat and Power or CHP) and solar photovoltaic (PV) appear to offer substantial technological and economic benefits over incumbent centralised technologies (especially, coal-fired generation). The adoption ofthese technologies may be enhanced by improved government incentives and regulatory reforms and a better appreciation of factors that influence the availability of investment capital. This study aims to identify the potential rate and extent of adoption of distributed generation in general and CHP in particular, by comparison with theoretical diffusion rates of other energy technologies. It seeks to expose and explore other factors which impact adoption, including supporting government policy and the need for demonstration to overcome technical risk. Finally, it examines the potential economic and environmental benefits associated with the large scale adoption of distributed energy technology. Through a mixture of literature review, analysis of a range of technical feasibility studies and a detailed case study, the extent to which distributed technologies may be adopted, and their financial, efficiency and environmental benefits are assessed. The analysis suggests that cogeneration is technically and economically feasible and is therefore a critical transition technology for the Australian stationary energy sector while distributed generation technologies in general, which are relatively mature and low risk, have the potential to substantially reduce emissions while also reducing costs and network and centralised generation investments

    Green Growth as a Generator for Overcoming the Crisis

    Get PDF
    Faced with the severest economic crisis after World War Two, the global economy is turning to new sources of growth, which should guide it on the road to economic recovery. In such circumstances, the idea of green growth, based on the belief that economic growth and care for the environment go "hand in hand," is being reaffirmed. In a way, green growth represents a step backward, i.e., going back to the UN Conference on Environment and Development held in Rio in 1992, when environmental sustainability of economic growth was the focus of attention. On the other hand, green growth also represents a step forward, as it is a practical and flexible approach that should contribute to the implementation of the concept of sustainable development in all its dimensions:economic, environmental and also social. A large number of countries, including the European Union, follow the green growth model, respecting national idiosyncrasies, which is demonstrated in this paper. In order to communicate with Europe and the world successfully, Serbia needs to share their fundamental values and commitments, but also preserve its national economic identity. Green growth (in the context of sustainable development) is a good option for Serbia and is its strong link to the rest of the world

    Collaborative planning and optimization for electric-thermal-hydrogen-coupled energy systems with portfolio selection of the complete hydrogen energy chain

    Full text link
    Under the global low-carbon target, the uneven spatiotemporal distribution of renewable energy resources exacerbates the uncertainty and seasonal power imbalance. Additionally, the issue of an incomplete hydrogen energy chain is widely overlooked in planning models, which hinders the complete analysis of the role of hydrogen in energy systems. Therefore, this paper proposes a high-resolution collaborative planning model for electricity-thermal-hydrogen-coupled energy systems considering both the spatiotemporal distribution characteristics of renewable energy resources and the multi-scale bottom-to-top investment strategy for the complete hydrogen energy chain. Considering the high-resolution system operation flexibility, this paper proposes a hydrogen chain-based fast clustering optimization method that can handle high-dimensional data and multi-time scale operation characteristics. The model optimizes the geographical distribution and capacity configuration of the Northeast China energy system in 2050, with hourly operational characteristics. The planning optimization covered single-energy devices, multi-energy-coupled conversion devices, and electric-hydrogen transmission networks. Last but not least, this paper thoroughly examines the optimal portfolio selection of different hydrogen technologies based on the differences in cost, flexibility, and efficiency. In the Pareto analysis, the proposed model reduces CO2 emissions by 60% with a competitive cost. This paper provides a zero-carbon pathway for multi-energy systems with a cost 4% less than the social cost of carbon $44.6/ton, and the integration of the complete hydrogen energy chain reduces the renewable energy curtailment by 97.0%. Besides, the portfolio selection results indicate that the system favors the SOEC with the highest energy efficiency and the PEMFC with the fastest dynamic response when achieving zero-carbon emissionsComment: 32 pages, 17 figure

    Développement d’une ACV conséquentielle dynamique : augmentation de la pénétration du bois dans le secteur de la construction

    Get PDF
    La fabrication des produits en bois peut avoir un impact plus faible sur le changement climatique que d'autres matériaux de construction, et leur teneur en carbone peut faire des bâtiments un puits de carbone temporaire. Les avancées technologiques, la formation, et la synergie qui se mettent en place entre les acteurs industriels et institutionnels participent aussi à l’acceptation du bois dans les bâtiments. Avec le nombre croissant de publications montrant que l'utilisation du bois dans la construction peut être une option écologique, les décideurs pourraient s'orienter vers une utilisation à grande échelle. Cependant, l'utilisation à grande échelle des produits du bois dans les bâtiments nécessite une meilleure compréhension de ses conséquences pour soutenir les politiques de lutte contre le changement climatique (CC). C’est pourquoi un cadre d'évaluation de l’utilisation croissante du bois dans la construction est développé dans cette thèse. Il se fonde sur une modélisation prospective d’analyse des flux de matière (AFM) pour supporter la méthode d’analyse du cycle de vie (ACV). Le secteur de la construction non résidentielle (NR) en bois au Québec est un bon exemple car les gouvernements (provincial et fédéral) cherchent à l’accroitre. En 2008, l’industrie forestière subit une crise suite à la baisse de ses exportations. Puis, à la suite de stratégies successives, le gouvernement québécois propose la première version de la charte du bois en 2013. Elle représente son engagement à augmenter l’utilisation du bois dans la construction pour soutenir l’industrie forestière et de la construction, ainsi que pour réduire les émissions de gaz à effet de serre (GES). Les bâtiments résidentiels unifamiliaux étant majoritairement faits en bois, l’engagement vise la construction non résidentielle et multifamiliale. Les ACV sur le bois ont des lacunes qui limitent la représentation et l’analyser des conséquences de son utilisation croissante à l’échelle d’une région pour un stock de bâtiment. Premièrement, la littérature suggère que la substitution de matériaux de construction conventionnels par des produits en bois est souhaitable pour atténuer les émissions de GES. Elle présente la différence de l’impact au CC qui est attribuable à la comparaison de deux bâtiments, structures, ou produits. Les autres impacts environnementaux sont moins abordés. Le résultat d’une évaluation à l’échelle d'une structure spécifique ou d’un bâtiment est difficilement applicable à d’autres cas d’études ou extrapolable à l’échelle d’une région pour un stock de bâtiments hétérogènes. De plus, ces évaluations ne permettent pas de considérer l’impact des processus impliqués ou évités en conséquence de cette substitution. L’identification de ces processus est un défi en ACV conséquentielle (ACV-C). Enfin, une utilisation du bois à grande échelle implique de comprendre le niveau de récolte par rapport disponibilité de la ressource, mais la quantification des flux de matière dans le secteur du bâtiment est limitée aux bâtiments résidentiels en raison d’un manque de données pour les bâtiments NR. Dans le but d’améliorer l’évaluation des impacts environnementaux causés par une augmentation de l’utilisation du bois dans la construction, la réponse aux lacunes est organisée de la façon suivante. Premièrement, des paramètres ont dû être élaboré pour estimer et projeter l’utilisation du bois dans les structures NR. Cette estimation sert de flux de référence. Elle est intégrée dans une AFM pour comprendre l’importance de ses valeurs extrêmes par rapport à la récolte totale du bois et la limite de la ressource disponible. Des facteurs de substitution de matières ont été créés à partir de différentes structures de la littérature. Ils sont appliqués à la quantité estimée des produits en bois qui sont utilisés. Enfin, la modélisation dynamique de la croissance des arbres et du roulement de stock permet de créer une cohérence temporelle entre l’inventaire des flux élémentaires et la caractérisation dynamique de l’impact. Ce projet de recherche apporte plusieurs contributions. Il permet d’estimer l’utilisation croissante du bois dans la construction NR à l’échelle d’une région. Ce type d’estimation est utile pour l’inventaire des flux de référence d’une ACV et pour compléter une AFM. Intégrée dans une AFM, elle permet de supporter l’identification de ressources contraintes dans le cas d’une ACV-C. Ce projet propose également des facteurs de substitution fonctionnelle pour le bois de structure par rapport à une combinaison de l’acier et du béton. Ils sont applicables pour les ACV-C et leur variabilité permet de considérer différentes structures et un intervalle d’impact déplacé pour tous les indicateurs environnementaux afin de faciliter l'interprétation d’une extrapolation à grande échelle. Enfin, le projet met en évidence l’importance relative entre la substitution, les stratégies de fin de vie, et la séquestration temporaire du carbone. Pour une cohorte de bâtiments, le stockage du carbone dans celle-ci est temporel pendant sa durée de vie. Cependant, à la dimension de cohortes successives, le stockage du carbone est plus durable dans le temps, soit pendant la durée de vie du stock. Le cumul du forçage radiatif n’était pas étudié à cette échelle dans le cas d’une régénération forestière après la récolte. Au Canada, la gestion de la forêt se base sur la possibilité annuelle de coupe qui est déterminée par les gouvernements provinciaux pour s'assurer que les taux de récolte demeurent à des niveaux durables. Cette possibilité forestière traduit le mètre cube de bois disponible pour la récolte. L'AFM a permis de montrer l’importance de l’estimation maximale du volume récolté pour les nouvelles structures par rapport à la possibilité forestière et à l’évolution de la récolte pour les exportations et de la récolte totale. Plus de recherche empirique est nécessaire sur l’analyse des flux du bois des autres marchés. La modélisation de la substitution a permis d'évaluer non seulement le déplacement d'impact sur le CC, mais aussi sur la santé humaine, la qualité des écosystèmes et les ressources. Les stratégies et politiques qui répondent à l'urgence climatique devraient également prêter attention à la qualité des écosystèmes. Dans le scénario de substitution minimale, le bois évite peu d’acier et de béton. De plus, la production unitaire des grades d’acier et de béton utilisés provoque moins d’impacts que celle des grades utilisés dans les scénarios de substitution moyenne et maximale. Dans ce scénario minimum, c’est la séquestration du carbone qui permet un évitement de l’impact sur le CC. A l’échelle de la structure, le maintien de cet évitement au cours du temps dépendant de la fin de vie de celle-ci. A l’échelle du stock de structure, le maintien de l’évitement dépend de son renouvellement et de la fin de vie des structures. Enfin, utiliser un facteur de caractérisation statique pour le CC pour un inventaire dynamique conséquentielle peut conduire à des conclusions opposées à celles d’un facteur dynamique. Finalement, différentes pistes d’amélioration sont présentées. En effet, des limites subsistent au niveau de la modélisation ACV et AFM en matière de complétude et de qualité des données ainsi qu’au niveau de la complexité des méthodes d’inventaires et d’impacts dynamiques. Par exemple, la méthode présentée pour estimer la quantité de bois pourrait être comparée à d’autres méthodes, si des données sont disponibles. Une plus grande désagrégation entre les différents produits du bois et leurs secteurs est nécessaire pour mieux cibler les conséquences potentielles de leurs complémentarités, concurrences et dynamiques de marché. Une modélisation plus complète des cycles de carbone forestier permettrait de comprendre si la récolte peut éviter les émissions de carbone dues aux feux et autres causes de mortalité des arbres. Enfin, l’impact sur la qualité des écosystèmes devrait être plus abordé par le sujet de la construction en bois.Abstract : The manufacture of wood products can have a lower impact on climate change than other building materials, and their carbon content can make buildings a temporary carbon sink. Technological advances, training, and synergy between industry and institutional players are also contributing to the acceptance of wood in buildings. With the increasing number of publications showing that the use of wood in construction can be an environmentally friendly option, decision-makers may be moving towards large-scale use. However, the large-scale use of wood products in buildings requires a better understanding of its consequences to support climate change (CC) policies. Therefore, a framework for assessing the increasing use of wood in construction is developed in this thesis. It is based on a prospective material flow analysis (MFA) modelling to support the life cycle assessment (LCA). The non-residential (NR) wood construction sector in Quebec is a good example as the provincial and federal governments seek to expand it. In 2008, the forestry industry suffered a crisis due to a decline in exports. Then, following successive strategies, the government of Quebec proposed the first version of the Wood Charter in 2013. It represents its commitment to increase the use of wood in construction to support the forestry and construction industry, as well as to reduce greenhouse gas (GHG) emissions. As single-family residential buildings are predominantly made of wood, the commitment is aimed at non-residential and multi-family construction. LCAs on wood have shortcomings that do not allow them to represent and analyze the consequences of its increasing use on a regional scale for a building stock. Firstly, the literature suggests that substitution of conventional building materials with wood products is desirable to mitigate GHG emissions. It presents the difference in CC impact that is attributable to the comparison of two buildings, structures, or products. Other environmental impacts are less discussed. The result of an assessment at the scale of a specific structure or building is hardly applicable to other study cases or extrapolable to the scale of a region for a heterogeneous building stock. Furthermore, these assessments do not allow for the impact of the processes involved or avoided as a result of this substitution to be considered. The identification of these processes is a challenge in consequential LCA (C-LCA). Finally, large-scale use of wood implies understanding the level of harvesting versus availability of the resource, but the quantification of material flows in the building sector is limited to residential buildings due to a lack of data for NR buildings. In order to improve the assessment of the environmental impacts caused by an increase in the use of wood in construction, the response to the gaps is organized as follows. Firstly, parameters had to be developed to estimate and project the use of wood in NR structures. This estimate serves as a reference flow. It is integrated into an MFA to understand the importance of its extreme values in relation to the total wood harvest and the limit of the available resource. Material substitution factors have been created from different structures in the literature. They are applied to the amount of wood products used. Finally, dynamic modelling of tree growth and stock turnover allows for temporal consistency between the inventory of elementary flows and the dynamic characterization of the impact. This research project makes several contributions. It allows to estimate the increasing use of wood in NR construction on a regional scale. This type of estimation is useful for the inventory of reference flows in an LCA and for completing an MFA. When integrated into an MFA, it supports the identification of constrained resources in the case of a C-LCA. This project also proposes functional substitution factors for structural wood compared to a combination of steel and concrete. They are applicable for C-LCA and their variability allows to consider different structures and a displaced impact range for all environmental indicators in order to facilitate the interpretation of a large scale extrapolation. Finally, the project highlights the relative importance between substitution, end-of-life strategies, and temporary carbon sequestration. For a cohort of buildings, carbon storage in the cohort is temporal during its lifetime. However, at the scale of successive cohorts, carbon storage is more lasting, i.e. over the lifetime of the stock. Cumulative radiative forcing was not studied at this scale in the case of post-harvest regrowth. In Canada, forest management is based on the annual allowable cut which is determined by provincial governments to ensure that harvest rates remain at sustainable levels. This allowable cut reflects the cubic meter of wood available for harvesting. The MFA showed the importance of the maximum estimation of the harvested volume for new structures regarding the allowable cut and changes in harvesting for exports and total harvesting. More empirical research is needed on the analysis of wood flows from other markets. Substitution modelling allowed to assess not only the displacement of CC impacts, but also human health, ecosystem quality and resources. Strategies and policies that respond to the climate emergency should also pay attention to ecosystem quality. In the minimum substitution scenario, wood avoids little steel and concrete. In addition, the unit production of the steel and concrete grades used causes fewer impacts than the that of the grades used in the average and maximum substitution scenarios. In this minimum scenario, it is carbon sequestration that enables CC impact avoidance. At the scale of the structure, the maintenance of this avoidance over time depends on the end of life of the structure. At the scale of the structure stock, the maintenance of the avoidance depends on its renewal and the end of life of the structures. Finally, using a static characterization factor for CC with a dynamic consequential inventory can lead to opposite conclusions to a dynamic factor. Finally, various avenues for improvement are presented. Indeed, limitations remain in LCA and MFA modelling in terms of data completeness and quality, as well as in the complexity of dynamic impact and inventory methods. For example, the presented method for estimating the amount of wood could be compared to other methods, if data are available. A greater disaggregation between the different wood products and their sectors is necessary to better target the potential consequences of their complementarities, competitions and market dynamics. More comprehensive modeling of forest carbon cycles would help understand whether harvesting can avoid carbon emissions from fires and other causes of tree mortality. Finally, the impact on the quality of ecosystems should be addressed more by the subject of wood construction
    • …
    corecore