63,446 research outputs found

    Signed Network Modeling Based on Structural Balance Theory

    Full text link
    The modeling of networks, specifically generative models, have been shown to provide a plethora of information about the underlying network structures, as well as many other benefits behind their construction. Recently there has been a considerable increase in interest for the better understanding and modeling of networks, but the vast majority of this work has been for unsigned networks. However, many networks can have positive and negative links(or signed networks), especially in online social media, and they inherently have properties not found in unsigned networks due to the added complexity. Specifically, the positive to negative link ratio and the distribution of signed triangles in the networks are properties that are unique to signed networks and would need to be explicitly modeled. This is because their underlying dynamics are not random, but controlled by social theories, such as Structural Balance Theory, which loosely states that users in social networks will prefer triadic relations that involve less tension. Therefore, we propose a model based on Structural Balance Theory and the unsigned Transitive Chung-Lu model for the modeling of signed networks. Our model introduces two parameters that are able to help maintain the positive link ratio and proportion of balanced triangles. Empirical experiments on three real-world signed networks demonstrate the importance of designing models specific to signed networks based on social theories to obtain better performance in maintaining signed network properties while generating synthetic networks.Comment: CIKM 2018: https://dl.acm.org/citation.cfm?id=327174

    A Model of Consistent Node Types in Signed Directed Social Networks

    Full text link
    Signed directed social networks, in which the relationships between users can be either positive (indicating relations such as trust) or negative (indicating relations such as distrust), are increasingly common. Thus the interplay between positive and negative relationships in such networks has become an important research topic. Most recent investigations focus upon edge sign inference using structural balance theory or social status theory. Neither of these two theories, however, can explain an observed edge sign well when the two nodes connected by this edge do not share a common neighbor (e.g., common friend). In this paper we develop a novel approach to handle this situation by applying a new model for node types. Initially, we analyze the local node structure in a fully observed signed directed network, inferring underlying node types. The sign of an edge between two nodes must be consistent with their types; this explains edge signs well even when there are no common neighbors. We show, moreover, that our approach can be extended to incorporate directed triads, when they exist, just as in models based upon structural balance or social status theory. We compute Bayesian node types within empirical studies based upon partially observed Wikipedia, Slashdot, and Epinions networks in which the largest network (Epinions) has 119K nodes and 841K edges. Our approach yields better performance than state-of-the-art approaches for these three signed directed networks.Comment: To appear in the IEEE/ACM International Conference on Advances in Social Network Analysis and Mining (ASONAM), 201

    Active influence in dynamical models of structural balance in social networks

    Full text link
    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of "friendliness levels" in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.Comment: 7 pages, 3 figures, to appear in Europhysics Letters (http://www.epletters.net

    Signed Networks in Social Media

    Full text link
    Relations between users on social media sites often reflect a mixture of positive (friendly) and negative (antagonistic) interactions. In contrast to the bulk of research on social networks that has focused almost exclusively on positive interpretations of links between people, we study how the interplay between positive and negative relationships affects the structure of on-line social networks. We connect our analyses to theories of signed networks from social psychology. We find that the classical theory of structural balance tends to capture certain common patterns of interaction, but that it is also at odds with some of the fundamental phenomena we observe --- particularly related to the evolving, directed nature of these on-line networks. We then develop an alternate theory of status that better explains the observed edge signs and provides insights into the underlying social mechanisms. Our work provides one of the first large-scale evaluations of theories of signed networks using on-line datasets, as well as providing a perspective for reasoning about social media sites
    • …
    corecore