156 research outputs found

    Signed Lozenge Tilings

    Get PDF
    It is well-known that plane partitions, lozenge tilings of a hexagon, perfect matchings on a honeycomb graph, and families of non-intersecting lattice paths in a hexagon are all in bijection. In this work we consider regions that are more general than hexagons. They are obtained by further removing upward-pointing triangles. We call the resulting shapes triangular regions. We establish signed versions of the latter three bijections for triangular regions. We first investigate the tileability of triangular regions by lozenges. Then we use perfect matchings and families of non-intersecting lattice paths to define two signs of a lozenge tiling. Using a new method that we call resolution of a puncture, we show that the two signs are in fact equivalent. As a consequence, we obtain the equality of determinants, up to sign, that enumerate signed perfect matchings and signed families of lattice paths of a triangular region, respectively. We also describe triangular regions, for which the signed enumerations agree with the unsigned enumerations

    A factorization theorem for lozenge tilings of a hexagon with triangular holes

    Full text link
    In this paper we present a combinatorial generalization of the fact that the number of plane partitions that fit in a 2a×b×b2a\times b\times b box is equal to the number of such plane partitions that are symmetric, times the number of such plane partitions for which the transpose is the same as the complement. We use the equivalent phrasing of this identity in terms of symmetry classes of lozenge tilings of a hexagon on the triangular lattice. Our generalization consists of allowing the hexagon have certain symmetrically placed holes along its horizontal symmetry axis. The special case when there are no holes can be viewed as a new, simpler proof of the enumeration of symmetric plane partitions.Comment: 20 page

    Lozenge tilings with free boundaries

    Full text link
    We study lozenge tilings of a domain with partially free boundary. In particular, we consider a trapezoidal domain (half hexagon), s.t. the horizontal lozenges on the long side can intersect it anywhere to protrude halfway across. We show that the positions of the horizontal lozenges near the opposite flat vertical boundary have the same joint distribution as the eigenvalues from a Gaussian Unitary Ensemble (the GUE-corners/minors process). We also prove the existence of a limit shape of the height function, which is also a vertically symmetric plane partition. Both behaviors are shown to coincide with those of the corresponding doubled fixed-boundary hexagonal domain. We also consider domains where the different sides converge to ∞\infty at different rates and recover again the GUE-corners process near the boundary.Comment: 27 pages, 4 figures; version 2-- typos fixed, improved proofs and computations, incorporated referee's comments. To appear in Letters in Mathematical Physic
    • …
    corecore