914 research outputs found

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Weyl Spreading Sequence Optimizing CDMA

    Full text link
    This paper shows an optimal spreading sequence in the Weyl sequence class, which is similar to the set of the Oppermann sequences for asynchronous CDMA systems. Sequences in Weyl sequence class have the desired property that the order of cross-correlation is low. Therefore, sequences in the Weyl sequence class are expected to minimize the inter-symbol interference. We evaluate the upper bound of cross-correlation and odd cross-correlation of spreading sequences in the Weyl sequence class and construct the optimization problem: minimize the upper bound of the absolute values of cross-correlation and odd cross-correlation. Since our optimization problem is convex, we can derive the optimal spreading sequences as the global solution of the problem. We show their signal to interference plus noise ratio (SINR) in a special case. From this result, we propose how the initial elements are assigned, that is, how spreading sequences are assigned to each users. In an asynchronous CDMA system, we also numerically compare our spreading sequences with other ones, the Gold codes, the Oppermann sequences, the optimal Chebyshev spreading sequences and the SP sequences in Bit Error Rate. Our spreading sequence, which yields the global solution, has the highest performance among the other spreading sequences tested

    CDMA signature sequences with low peak-to-average-power ratio via alternating projection

    Get PDF
    Several algorithms have been proposed to construct optimal signature sequences that maximize the sum capacity of the uplink in a direct-spread synchronous code division multiple access (CDMA) system. These algorithms produce signatures with real-valued or complex-valued entries that generally have a large peak-to-average power ratio (PAR). This paper presents an alternating projection algorithm that can design optimal signature sequences that satisfy PAR side constraints. This algorithm converges to a fixed point, and these fixed points are partially characterized

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems
    corecore