287,820 research outputs found

    A survey of exemplar-based texture synthesis

    Full text link
    Exemplar-based texture synthesis is the process of generating, from an input sample, new texture images of arbitrary size and which are perceptually equivalent to the sample. The two main approaches are statistics-based methods and patch re-arrangement methods. In the first class, a texture is characterized by a statistical signature; then, a random sampling conditioned to this signature produces genuinely different texture images. The second class boils down to a clever "copy-paste" procedure, which stitches together large regions of the sample. Hybrid methods try to combine ideas from both approaches to avoid their hurdles. The recent approaches using convolutional neural networks fit to this classification, some being statistical and others performing patch re-arrangement in the feature space. They produce impressive synthesis on various kinds of textures. Nevertheless, we found that most real textures are organized at multiple scales, with global structures revealed at coarse scales and highly varying details at finer ones. Thus, when confronted with large natural images of textures the results of state-of-the-art methods degrade rapidly, and the problem of modeling them remains wide open.Comment: v2: Added comments and typos fixes. New section added to describe FRAME. New method presented: CNNMR

    Polarised foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionisation

    Full text link
    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionisation history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio obsevations. This leakage leads to a portion of the complex linear polarisation signal finding its way into Stokes I, and inhibits the detection of the non-polarised cosmological signal from the epoch of reionisation. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionisation in the presence of contamination by polarised foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarisation leakage, and redshifted 21-cm emission by neutral hydrogen from the epoch of reionisation. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarisation leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionisation in its late stages (z ~ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionised cavities in the intergalactic medium.Comment: 22 pages including 11 figures. Minor revisions following referee's report. MNRAS, in pres

    Vibration signature analysis of multistage gear transmission

    Get PDF
    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system

    Discovery of a Nearby Low-Surface-Brightness Spiral Galaxy

    Get PDF
    During the course of a search for compact, isolated gas clouds moving with anomalous velocities in or near our own Galaxy (Braun and Burton 1998 A&A, in press), we have discovered, in the data of the Leiden/Dwingeloo survey (Hartmann and Burton 1997, Atlas of Galactic Neutral Hydrogen, CUP) of Galactic hydrogen, the HI signature of a large galaxy, moving at a recession velocity of 282 km/s, with respect to our Galaxy. Deep multicolor and spectroscopic optical observations show the presence of star formation in scattered HII regions; radio HI synthesis interferometry confirms that the galaxy is rich in HI and has the rotation signature of a spiral galaxy; a submillimeter observation failed to detect the CO molecule. The radio and optical evidence combined suggest its classification as a low-surface-brightness spiral galaxy. It is located in close spatial and kinematic proximity to the galaxy NGC 6946. The newly-discovered galaxy, which we call Cepheus 1, is at a distance of about 6 Mpc. It is probably to be numbered amongst the nearest few LSB spirals.Comment: 13 page LaTeX, requires aastex, 4 GIF figures. Accepted for publication in the AJ, January 199

    Bmp induces osteoblast differentiation through both Smad4 and mTORC1 signaling

    Get PDF
    The bone morphogenetic protein (Bmp) family of secreted molecules has been extensively studied in the context of osteoblast differentiation. However, the intracellular signaling cascades that mediate the osteoblastogenic function of Bmp have not been fully elucidated. By profiling mRNA expression in the bone marrow mesenchymal progenitor cell line ST2, we discover that BMP2 induces not only genes commonly associated with ossification and mineralization but also genes important for general protein synthesis. We define the two groups of genes as mineralization related versus protein anabolism signatures of osteoblasts. Although it induces the expression of several Wnt genes, BMP2 activates the osteogenic program largely independently of de novo Wnt secretion. Remarkably, although Smad4 is necessary for the activation of the mineralization-related genes, it is dispensable for BMP2 to induce the protein anabolism signature, which instead critically depends on the transcription factor Atf4. Upstream of Atf4, BMP2 activates mTORC1 to stimulate protein synthesis, resulting in an endoplasmic reticulum stress response mediated by Perk. Thus, Bmp signaling induces osteoblast differentiation through both Smad4- and mTORC1-dependent mechanisms

    A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa

    Get PDF
    Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host–pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3′, 5′-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium
    • …
    corecore