256 research outputs found

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    System-on-Chip design of a high performance low power full hardware cabac encoder in H.264/AVC

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Development of a secure monitoring framework for optical disaggregated data centres

    Get PDF
    Data center (DC) infrastructures are a key piece of nowadays telecom and cloud services delivery, enabling the access and storage of enormous quantities of information as well as the execution of complex applications and services. Such aspect is being accentuated with the advent of 5G and beyond architectures, since a significant portion of the network and service functions are being deployed as specialized virtual elements inside dedicated DC infrastructures. As such, the development of new architectures to better exploit the resources of DC becomes of paramount importanceThe mismatch between the variability of resources required by running applications and the fixed amount of resources in server units severely limits resource utilization in today's Data Centers (DCs). The Disaggregated DC (DDC) paradigm was recently introduced to address these limitations. The main idea behind DDCs is to divide the various computational resources into independent hardware modules/blades, which are mounted in racks, bringing greater modularity and allowing operators to optimize their deployments for improved efficiency and performance, thus, offering high resource allocation flexibility. Moreover, to efficiently exploit the hardware blades and establish the connections across them according to upper layer requirements, a flexible control and management framework is required. In this regard, following current industrial trends, the Software Defined Networking (SDN) paradigm is one of the leading technologies for the control of DC infrastructures, allowing for the establishment of high-speed, low-latency optical connections between hardware components in DDCs in response to the demands of higher-level services and applications. With these concepts in mind, the primary objective of this thesis is to design and carry out the implementation of the control of a DDC infrastructure layer that is founded on the SDN principles and makes use of optical technologies for the intra-DC network fabric, highlighting the importance of quality control and monitoring. Thanks to several SDN agents, it becomes possible to gather statistics and metrics from the multiple infrastructure elements (computational blades and network equipment), allowing DC operators to monitor and make informed decisions on how to utilize the infrastructure resources to the greatest extent feasible. Indeed, quality assurance operations are of capital importance in modern DC infrastructures, thus, it becomes essential to guarantee a secure communication channel for gathering infrastructure metrics/statistics and enforcing (re-)configurations, closing the full loop, then addressing the security layer to secure the communication channel by encryption and providing authentication for the server and the client

    Adaptive Distributed Architectures for Future Semiconductor Technologies.

    Full text link
    Year after year semiconductor manufacturing has been able to integrate more components in a single computer chip. These improvements have been possible through systematic shrinking in the size of its basic computational element, the transistor. This trend has allowed computers to progressively become faster, more efficient and less expensive. As this trend continues, experts foresee that current computer designs will face new challenges, in utilizing the minuscule devices made available by future semiconductor technologies. Today's microprocessor designs are not fit to overcome these challenges, since they are constrained by their inability to handle component failures by their lack of adaptability to a wide range of custom modules optimized for specific applications and by their limited design modularity. The focus of this thesis is to develop original computer architectures, that can not only survive these new challenges, but also leverage the vast number of transistors available to unlock better performance and efficiency. The work explores and evaluates new software and hardware techniques to enable the development of novel adaptive and modular computer designs. The thesis first explores an infrastructure to quantitatively assess the fallacies of current systems and their inadequacy to operate on unreliable silicon. In light of these findings, specific solutions are then proposed to strengthen digital system architectures, both through hardware and software techniques. The thesis culminates with the proposal of a radically new architecture design that can fully adapt dynamically to operate on the hardware resources available on chip, however limited or abundant those may be.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102405/1/apellegr_1.pd

    Contributions to the fault tolerance of soft-core processors implemented in SRAM-based FPGA Systems.

    Get PDF
    239 p.Gracias al desarrollo de las tecnologías de diseño y fabricación, los circuitos electrónicos han llegado a grandes niveles de integración. De esta forma, hoy en día es posible implementar completos y complejos sistemas dentro de un único dispositivo incorporando gran variedad de elementos como: procesadores, osciladores, lazos de seguimiento de fase (PLLs), interfaces, conversores ADC y DAC, módulos de memoria, etc. A este concepto de diseño se le denomina comúnmente SoC (System-on-Chip). Una de las plataformas para implementar estos sistemas que más importancia está cobrando son las FPGAs (Field Programmable Gate Array). Históricamente la plataforma más utilizada para albergar los SoCs han sido las ASICs (Application- Specific Integrated Circuits), debido a su bajo consumo energético y su gran rendimiento. No obstante, su costoso proceso de desarrollo y fabricación hace que solo sean rentables en el caso de producciones masivas. Las FPGAs, por el contrario, al ser dispositivos configurables ofrecen, la posibilidad de implementar diseños personalizados a un coste mucho más reducido. Por otro lado, los continuos avances en la tecnología de las FPGAs están haciendo que éstas compitan con las ASICs a nivel de prestaciones (consumo, nivel de integración y eficiencia). Ciertas tecnologías de FPGA, como las SRAM y Flash, poseen una característica que las hace especialmente interesantes en multitud de diseños: la capacidad de reconfiguración. Dicha característica, que incluso puede ser realizada de forma autónoma, permite cambiar completamente el diseño hardware implementado con solo cargar en la FPGA un archivo de configuración denominado bitstream. La reconfiguración puede incluso permitir modificar una parte del circuito configurado en la matriz de la FPGA, mientras el resto del circuito implementado continua inalterado. Esto que se conoce como reconfiguración parcial dinámica, posibilita que un mismo chip albergue en su interior numerosos diseños hardware que pueden ser cargados a demanda. Gracias a la capacidad de reconfiguración, las FPGAs ofrecen numerosas ventajas como: posibilidad de personalización de diseños, capacidad de readaptación durante el funcionamiento para responder a cambios o corregir errores, mitigación de obsolescencia, diferenciación, menores costes de diseño o reducido tiempo para el lanzamiento de productos al mercado. Los SoC basados en FPGAs allanan el camino hacia un nuevo concepto de integración de hardware y software, permitiendo que los diseñadores de sistemas electrónicos sean capaces de integrar procesadores embebidos en los diseños para beneficiarse de su gran capacidad de computación. Gracias a esto, una parte importante de la electrónica hace uso de la tecnología FPGA abarcando un gran abanico de campos, como por ejemplo: la electrónica de consumo y el entretenimiento, la medicina o industrias como la espacial, la aviónica, la automovilística o la militar. Las tecnologías de FPGA existentes ofrecen dos vías de utilización de procesado- res embebidos: procesadores hardcore y procesadores softcore. Los hardcore son procesadores discretos integrados en el mismo chip de la FPGA. Generalmente ofrecen altas frecuencias de trabajo y una mayor previsibilidad en términos de rendimiento y uso del área, pero su diseño hardware no puede alterarse para ser personalizado. Por otro lado, un procesador soft-core, es la descripción hardware en lenguaje HDL (normalmente VDHL o Verilog) de un procesador, sintetizable e implementable en una FPGA. Habitualmente, los procesadores softcore suelen basarse en diseños hardware ya existentes, siendo compatibles con sus juegos de instrucciones, muchos de ellos en forma de IP cores (Intellectual Property co- res). Los IP cores ofrecen procesadores softcore prediseñados y testeados, que dependiendo del caso pueden ser de pago, gratuitos u otro tipo de licencias. Debido a su naturaleza, los procesadores softcore, pueden ser personalizados para una adaptación óptima a diseños específicos. Así mismo, ofrecen la posibilidad de integrar en el diseño tantos procesadores como se desee (siempre que haya disponibles recursos lógicos suficientes). Otra ventaja importante es que, gracias a la reconfiguración parcial dinámica, es posible añadir el procesador al diseño únicamente en los casos necesarios, ahorrando de esta forma, recursos lógicos y consumo energético. Uno de los mayores problemas que surgen al usar dispositivos basados en las tecnologías SRAM o la flash, como es el caso de las FPGAs, es que son especialmente sensibles a los efectos producidos por partículas energéticas provenientes de la radiación cósmica (como protones, neutrones, partículas alfa u otros iones pesados) denominados efectos de eventos simples o SEEs (Single Event Effects). Estos efectos pueden ocasionar diferentes tipos de fallos en los sistemas: desde fallos despreciables hasta fallos realmente graves que comprometan la funcionalidad del sistema. El correcto funcionamiento de los sistemas cobra especial relevancia cuando se trata de tecnologías de elevado costo o aquellas en las que peligran vidas humanas, como, por ejemplo, en campos tales como el transporte ferroviario, la automoción, la aviónica o la industria aeroespacial. Dependiendo de distintos factores, los SEEs pueden causar fallos de operación transitorios, cambios de estados lógicos o daños permanentes en el dispositivo. Cuando se trata de un fallo físico permanente se denomina hard-error, mientras que cuando el fallo afecta el circuito momentáneamente se denomina soft-error. Los SEEs más frecuentes son los soft-errors y afectan tanto a aplicaciones comerciales a nivel terrestre, como a aplicaciones aeronáuticas y aeroespaciales (con mayor incidencia en estas últimas). La contribución exacta de este tipo de fallos a la tasa de errores depende del diseño específico de cada circuito, pero en general se asume que entorno al 90 % de la tasa de error se debe a fallos en elementos de memoria (latches, biestables o celdas de memoria). Los soft-errors pueden afectar tanto al circuito lógico como al bitstream cargado en la memoria de configuración de la FPGA. Debido a su gran tamaño, la memoria de configuración tiene más probabilidades de ser afectada por un SEE. La existencia de problemas generados por estos efectos reafirma la importancia del concepto de tolerancia a fallos. La tolerancia a fallos es una propiedad relativa a los sistemas digitales, por la cual se asegura cierta calidad en el funcionamiento ante la presencia de fallos, debiendo los sistemas poder soportar los efectos de dichos fallos y funcionar correctamente en todo momento. Por tanto, para lograr un diseño robusto, es necesario garantizar la funcionalidad de los circuitos y asegurar la seguridad y confiabilidad en las aplicaciones críticas que puedan verse comprometidos por los SEE. A la hora de hacer frente a los SEE existe la posibilidad de explotar tecnologías específicas centradas en la tolerancia a fallos, como por ejemplo las FPGAs de tipo fusible, o, por otro lado, utilizar la tecnología comercial combinada con técnicas de tolerancia a fallos. Esta última opción va cobrando importancia debido al menor precio y mayores prestaciones de las FPGAs comerciales. Generalmente las técnicas de endurecimiento se aplican durante la fase de diseño. Existe un gran número de técnicas y se pueden llegar a combinar entre sí. Las técnicas prevalentes se basan en emplear algún tipo de redundancia, ya sea hardware, software, temporal o de información. Cada tipo de técnica presenta diferentes ventajas e inconvenientes y se centra en atacar distintos tipos de SEE y sus efectos. Dentro de las técnicas de tipo redundancia, la más utilizada es la hardware, que se basa en replicar el modulo a endurecer. De esta forma, cada una de las réplicas es alimentada con la misma entrada y sus salidas son comparadas para detectar discrepancias. Esta redundancia puede implementarse a diferentes niveles. En términos generales, un mayor nivel de redundancia hardware implica una mayor robustez, pero también incrementa el uso de recursos. Este incremento en el uso de recursos de una FPGA supone tener menos recursos disponibles para el diseño, mayor consumo energético, el tener más elementos susceptibles de ser afectados por un SEE y generalmente, una reducción de la máxima frecuencia alcanzable por el diseño. Por ello, los niveles de redundancia hardware más utilizados son la doble, conocida como DMR (Dual Modular Redundancy) y la triple o TMR (Triple Modular Redundancy). La DMR minimiza el número de recursos redundantes, pero presenta el problema de no poder identificar el módulo fallido ya que solo es capaz de detectar que se ha producido un error. Ello hace necesario combinarlo con técnicas adicionales. Al caso de DMR aplicado a procesadores se le denomina lockstep y se suele combinar con las técnicas checkpoint y rollback recovery. El checkpoint consiste en guardar periódicamente el contexto (contenido de registros y memorias) de instantes identificados como correctos. Gracias a esto, una vez detectado y reparado un fallo es posible emplear el rollback recovery para cargar el último contexto correcto guardado. Las desventajas de estas estrategias son el tiempo requerido por ambas técnicas (checkpoint y rollback recovery) y la necesidad de elementos adicionales (como memorias auxiliares para guardar el contexto). Por otro lado, el TMR ofrece la posibilidad de detectar el módulo fallido mediante la votación por mayoría. Es decir, si tras comparar las tres salidas una de ellas presenta un estado distinto, se asume que las otras dos son correctas. Esto permite que el sistema continúe funcionando correctamente (como sistema DMR) aun cuando uno de los módulos quede inutilizado. En todo caso, el TMR solo enmascara los errores, es decir, no los corrige. Una de las desventajas más destacables de esta técnica es que incrementa el uso de recursos en más de un 300 %. También cabe la posibilidad de que la salida discrepante sea la realmente correcta (y que, por tanto, las otras dos sean incorrectas), aunque este caso es bastante improbable. Uno de los problemas que no se ha analizado con profundidad en la bibliografía es el problema de la sincronización de procesadores soft-core en sistemas TMR (o de mayor nivel de redundancia). Dicho problema reside en que, si tras un fallo se inutiliza uno de los procesadores y el sistema continúa funcionando con el resto de procesadores, una vez reparado el procesador fallido éste necesita sincronizar su contexto al nuevo estado del sistema. Una práctica bastante común en la implementación de sistemas redundantes es combinarlos con la técnica conocida como scrubbing. Esta técnica basada en la reconfiguración parcial dinámica, consiste en sobrescribir periódicamente el bitstream con una copia libre de errores apropiadamente guardada. Gracias a ella, es posible corregir los errores enmascarados por el uso de algunas técnicas de endurecimiento como la redundancia hardware. Esta copia libre de errores suele omitir los bits del bitstream correspondientes a la memoria de usuario, por lo que solo actualiza los bits relacionados con la configuración de la FPGA. Por ello, a esta técnica también se la conoce como configuration scrubbing. En toda la literatura consultada se ha detectado un vacío en cuanto a técnicas que propongan estrategias de scrubbing para la memoria de usuario. Con el objetivo de proponer alternativas innovadoras en el terreno de la tolerancia a fallos para procesadores softcore, en este trabajo de investigación se han desarrollado varias técnicas y flujos de diseño para manejar los datos de usuario a través del bitstream, pudiendo leer, escribir o copiar la información de registros o de memorias implementadas en bloques RAMs de forma autónoma. Así mismo se ha desarrollado un abanico de propuestas tanto como para estrategias lockstep como para la sincronización de sistemas TMR, de las cuales varias hacen uso de las técnicas desarrolladas para manejar las memorias de usuario a través del bitstream. Estas últimas técnicas tienen en común la minimización de utilización de recursos respecto a las estrategias tradicionales. De forma similar, se proponen dos alternativas adicionales basadas en dichas técnicas: una propuesta de scrubbing para las memorias de usuario y una para la recuperación de información en memorias implementadas en bloques RAM cuyas interfaces hayan sido inutilizadas por SEEs.Todas las propuestas han sido validadas en hardware utilizando una FPGA de Xilinx, la empresa líder en fabricación de dispositivos reconfigurables. De esta forma se proporcionan resultados sobre los impactos de las técnicas propuestas en términos de utilización de recursos, consumos energéticos y máximas frecuencias alcanzables

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Computational Imaging Approach to Recovery of Target Coordinates Using Orbital Sensor Data

    Get PDF
    This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data. Using physical targets and sensors in this scenario would be cost-prohibitive in the exploratory setting posed, therefore a simulated target path is generated using Bezier curves which approximate representative paths followed by the targets of interest. Orbital trajectories for the sensors are designed on an elliptical model representative of the motion of physical orbital sensors. Images from each sensor are simulated based on the position and orientation of the sensor, the position of the target, and the imaging parameters selected for the experiment (resolution, noise level, blur level, etc.). Post-processing of the simulated imagery seeks to reduce noise and blur and increase resolution. The only information available for calculating the target position by a fully implemented system are the sensor position and orientation vectors and the images from each sensor. From these data we develop a reliable method of recovering the target position and analyze the impact on near-realtime processing. We also discuss the influence of adjustments to system components on overall capabilities and address the potential system size, weight, and power requirements from realistic implementation approaches

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis
    corecore