10,120 research outputs found

    Synchronization and Characterization of an Ultra-Short Laser for Photoemission and Electron-Beam Diagnostics Studies at a Radio Frequency Photoinjector

    Full text link
    A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz master oscillator and a 1-Hz signal use to trigger the radiofrequency system and instrumentation acquisition. The synchronization scheme and performance are detailed. Long-term temporal and intensity drifts are identified and actively suppressed to within 1 ps and 1.5%, respectively. Measurement and optimization of the laser's temporal profile are accomplished using frequency-resolved optical gating.Comment: 16 pages, 17 figures, Preprint submitted to Elsevie

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected

    A high-resolution full-field range imaging system

    Get PDF
    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution

    GPS interferometric attitude and heading determination: Initial flight test results

    Get PDF
    Attitude and heading determination using GPS interferometry is a well-understood concept. However, efforts have been concentrated mainly in the development of robust algorithms and applications for low dynamic, rigid platforms (e.g., shipboard). This paper presents results of what is believed by the authors to be the first realtime flight test of a GPS attitude and heading determination system. The system is installed in Ohio University's Douglas DC-3 research aircraft. Signals from four antennas are processed by an Ashtech 3DF 24-channel GPS receiver. Data from the receiver are sent to a microcomputer for storage and further computations. Attitude and heading data are sent to a second computer for display on a software generated artificial horizon. Demonstration of this technique proves its candidacy for augmentation of aircraft state estimation for flight control and navigation as well as for numerous other applications

    A high resolution full-field range imaging system for robotic devices

    Get PDF
    There has been considerable effort by many researchers to develop a high resolution full-field range imaging system. Traditionally these systems rely on a homodyne technique that modulates the illumination source and shutter speed at some high frequency. These systems tend to suffer from the need to be calibrated to account for changing ambient light conditions and generally cannot provide better than single centimeter range resolution, and even then over a range of only a few meters. We present a system, tested to proof-of-concept stage that is being developed for use on a range of mobile robots. The system has the potential for real-time, sub millimeter range resolution, with minimal power and space requirements

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc
    corecore