332 research outputs found

    Signal-Dependent Analog-to-Digital Conversion Based on MINIMAX Sampling

    Full text link

    Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Get PDF
    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values

    The design and multiplier-less realization of software radio receivers with reduced system delay

    Get PDF
    This paper studies the design and multiplier-less realization of a new software radio receiver (SRR) with reduced system delay. It employs low-delay finite-impulse response (FIR) and digital allpass filters to effectively reduce the system delay of the multistage decimators in SRRs. The optimal least-square and minimax designs of these low-delay FIR and allpass-based filters are formulated as a semidefinite programming (SDP) problem, which allows zero magnitude constraint at ω = π to be incorporated readily as additional linear matrix inequalities (LMIs). By implementing the sampling rate converter (SRC) using a variable digital filter (VDF) immediately after the integer decimators, the needs for an expensive programmable FIR filter in the traditional SRR is avoided. A new method for the optimal minimax design of this VDF-based SRC using SDP is also proposed and compared with traditional weight least squares method. Other implementation issues including the multiplier-less and digital signal processor (DSP) realizations of the SRR and the generation of the clock signal in the SRC are also studied. Design results show that the system delay and implementation complexities (especially in terms of high-speed variable multipliers) of the proposed architecture are considerably reduced as compared with conventional approaches. © 2004 IEEE.published_or_final_versio

    Variable Fractional Delay Filter Design Using a Symmetric Window

    Get PDF

    Design and Realization of Fully-digital Microwave and Mm-wave Multi-beam Arrays with FPGA/RF-SOC Signal Processing

    Get PDF
    There has been a constant increase in data-traffic and device-connections in mobile wireless communications, which led the fifth generation (5G) implementations to exploit mm-wave bands at 24/28 GHz. The next-generation wireless access point (6G and beyond) will need to adopt large-scale transceiver arrays with a combination of multi-input-multi-output (MIMO) theory and fully digital multi-beam beamforming. The resulting high gain array factors will overcome the high path losses at mm-wave bands, and the simultaneous multi-beams will exploit the multi-directional channels due to multi-path effects and improve the signal-to-noise ratio. Such access points will be based on electronic systems which heavily depend on the integration of RF electronics with digital signal processing performed in Field programmable gate arrays (FPGA)/ RF-system-on-chip (SoC). This dissertation is directed towards the investigation and realization of fully-digital phased arrays that can produce wideband simultaneous multi-beams with FPGA or RF-SoC digital back-ends. The first proposed approach is a spatial bandpass (SBP) IIR filter-based beamformer, and is based on the concepts of space-time network resonance. A 2.4 GHz, 16-element array receiver, has been built for real-time experimental verification of this approach. The second and third approaches are respectively based on Discrete Fourier Transform (DFT) theory, and a lens plus focal planar array theory. Lens based approach is essentially an analog model of DFT. These two approaches are verified for a 28 GHz 800 MHz mm-wave implementation with RF-SoC as the digital back-end. It has been shown that for all proposed multibeam beamformer implementations, the measured beams are well aligned with those of the simulated. The proposed approaches differ in terms of their architectures, hardware complexity and costs, which will be discussed as this dissertation opens up. This dissertation also presents an application of multi-beam approaches for RF directional sensing applications to explore white spaces within the spatio-temporal spectral regions. A real-time directional sensing system is proposed to capture the white spaces within the 2.4 GHz Wi-Fi band. Further, this dissertation investigates the effect of electro-magnetic (EM) mutual coupling in antenna arrays on the real-time performance of fully-digital transceivers. Different algorithms are proposed to uncouple the mutual coupling in digital domain. The first one is based on finding the MC transfer function from the measured S-parameters of the antenna array and employing it in a Frost FIR filter in the beamforming backend. The second proposed method uses fast algorithms to realize the inverse of mutual coupling matrix via tridiagonal Toeplitz matrices having sparse factors. A 5.8 GHz 32-element array and 1-7 GHz 7-element tightly coupled dipole array (TCDA) have been employed to demonstrate the proof-of-concept of these algorithms

    Digital signal processing techniques for peak-to-average power ratio mitigation in MIMO–OFDM systems

    Get PDF
    The focus of this thesis is to mitigate the very large peak-to-average transmit power ratios (PAPRs) inherent to conventional orthogonal frequency division multiplexing (OFDM) systems, particularly in the context of transmission over multi-input multi-output (MIMO) wireless broadband channels. This problem is important as a large PAPR generally needs an expensive radio frequency (RF) power amplifier at the transmitter due to the requirement for linear operation over a wide amplitude range and such a cost would be compounded when multiple transmit antennas are used. Advanced signal processing techniques which can reduce PAPR whilst retain the integrity of digital transmission therefore have considerable potential for application in emergent MIMO–OFDM wireless systems and form the technical contributions of this study. [Continues.

    When the Differences in Frequency Domain are Compensated: Understanding and Defeating Modulated Replay Attacks on Automatic Speech Recognition

    Full text link
    Automatic speech recognition (ASR) systems have been widely deployed in modern smart devices to provide convenient and diverse voice-controlled services. Since ASR systems are vulnerable to audio replay attacks that can spoof and mislead ASR systems, a number of defense systems have been proposed to identify replayed audio signals based on the speakers' unique acoustic features in the frequency domain. In this paper, we uncover a new type of replay attack called modulated replay attack, which can bypass the existing frequency domain based defense systems. The basic idea is to compensate for the frequency distortion of a given electronic speaker using an inverse filter that is customized to the speaker's transform characteristics. Our experiments on real smart devices confirm the modulated replay attacks can successfully escape the existing detection mechanisms that rely on identifying suspicious features in the frequency domain. To defeat modulated replay attacks, we design and implement a countermeasure named DualGuard. We discover and formally prove that no matter how the replay audio signals could be modulated, the replay attacks will either leave ringing artifacts in the time domain or cause spectrum distortion in the frequency domain. Therefore, by jointly checking suspicious features in both frequency and time domains, DualGuard can successfully detect various replay attacks including the modulated replay attacks. We implement a prototype of DualGuard on a popular voice interactive platform, ReSpeaker Core v2. The experimental results show DualGuard can achieve 98% accuracy on detecting modulated replay attacks.Comment: 17 pages, 24 figures, In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS' 20

    Subband Architecture for Hybrid Filter Bank A/D Converters

    Full text link
    • …
    corecore