1,011 research outputs found

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populären Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden häufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. Für professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen Ansätze für gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf Filterbänken, wie etwa der überlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prädiktive Codierung zur Redundanzreduktion. Nur wenige Ansätze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit präsentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten überlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprünglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch für Filterbänke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprünglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populären Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden häufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. Für professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen Ansätze für gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf Filterbänken, wie etwa der überlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prädiktive Codierung zur Redundanzreduktion. Nur wenige Ansätze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit präsentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten überlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprünglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch für Filterbänke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprünglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    Considering Bluetooth's Subband Codec (SBC) for Wideband Speech and Audio on the Internet

    Get PDF
    The Bluetooth Special Interest Group (SIG) has standardized the subband coding (SBC) audio codec to connect headphones via wireless Bluetooth links. SBC compresses audio at high fidelity while having an ultra-low algorithm delay. To make SBC suitable for the Internet, we extend it by using a time and packet loss concealment (PLC) algorithm that is based on ITU's G.711 Appendix I. The design is novel in the aspect of the interface between codec and speech receiver. We developed a new approach on how to distribute the functionality of a speech receiver between codec and application. Our approach leads to easier implementations of high quality VoIP applications. We conducted subjective and objective listening tests of the audio quality of SBC and PLC in order to determine an optimal coding mode and the trade-off between coding mode and packet loss rate. More precisely, we conducted MUSHRA listening tests for selected sample items. These tests results are then compared with the results of multiple objective assessment algorithms (ITU P.862 PESQ, ITU BS.1387-1 PEAQ, Creusere's algorithm). We found out that a combination of the PEAQ basic and advanced values best matches---after third order linear regression---the subjective MUSHRA results . The linear regression has coefficient of determination of R²=0.907². By comparison, our individual human ratings show a correlation of about R=0.9 compared to our averaged human rating results. Using the combination of both PEAQ algorithms, we calculate hundred thousands of objective audio quality ratings varying audio content and algorithmic parameters of SBC and PLC. The results show which set of parameters value are best suitable for a bandwidth and delay constrained link. The transmission quality of SBC is enhanced significantly by selecting optimal encoding parameters as compared to the default parameter sets given in the standard. Finally, we present preliminary objective tests results on the comparison of the audio codecs SBC, CELT, APT-X and ULD coding speech and audio transmission. They all allow a mono and stereo transmission of music at ultra-low coding delays (<10ms), which is especially useful for distributed ensemble performances over the Internet

    Database of audio records

    Get PDF
    Diplomka a prakticky castDiplome with partical part

    Homogeneous and heterogeneous MPSoC architectures with network-on-chip connectivity for low-power and real-time multimedia signal processing

    Get PDF
    Two multiprocessor system-on-chip (MPSoC) architectures are proposed and compared in the paper with reference to audio and video processing applications. One architecture exploits a homogeneous topology; it consists of 8 identical tiles, each made of a 32-bit RISC core enhanced by a 64-bit DSP coprocessor with local memory. The other MPSoC architecture exploits a heterogeneous-tile topology with on-chip distributed memory resources; the tiles act as application specific processors supporting a different class of algorithms. In both architectures, the multiple tiles are interconnected by a network-on-chip (NoC) infrastructure, through network interfaces and routers, which allows parallel operations of the multiple tiles. The functional performances and the implementation complexity of the NoC-based MPSoC architectures are assessed by synthesis results in submicron CMOS technology. Among the large set of supported algorithms, two case studies are considered: the real-time implementation of an H.264/MPEG AVC video codec and of a low-distortion digital audio amplifier. The heterogeneous architecture ensures a higher power efficiency and a smaller area occupation and is more suited for low-power multimedia processing, such as in mobile devices. The homogeneous scheme allows for a higher flexibility and easier system scalability and is more suited for general-purpose DSP tasks in power-supplied devices

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Signal processing for improved MPEG-based communication systems

    Get PDF

    PERFORMANCE IMPROVEMENT OF MULTICHANNEL AUDIO BY GRAPHICS PROCESSING UNITS

    Full text link
    Multichannel acoustic signal processing has undergone major development in recent years due to the increased complexity of current audio processing applications. People want to collaborate through communication with the feeling of being together and sharing the same environment, what is considered as Immersive Audio Schemes. In this phenomenon, several acoustic e ects are involved: 3D spatial sound, room compensation, crosstalk cancelation, sound source localization, among others. However, high computing capacity is required to achieve any of these e ects in a real large-scale system, what represents a considerable limitation for real-time applications. The increase of the computational capacity has been historically linked to the number of transistors in a chip. However, nowadays the improvements in the computational capacity are mainly given by increasing the number of processing units, i.e expanding parallelism in computing. This is the case of the Graphics Processing Units (GPUs), that own now thousands of computing cores. GPUs were traditionally related to graphic or image applications, but new releases in the GPU programming environments, CUDA or OpenCL, allowed that most applications were computationally accelerated in elds beyond graphics. This thesis aims to demonstrate that GPUs are totally valid tools to carry out audio applications that require high computational resources. To this end, di erent applications in the eld of audio processing are studied and performed using GPUs. This manuscript also analyzes and solves possible limitations in each GPU-based implementation both from the acoustic point of view as from the computational point of view. In this document, we have addressed the following problems: Most of audio applications are based on massive ltering. Thus, the rst implementation to undertake is a fundamental operation in the audio processing: the convolution. It has been rst developed as a computational kernel and afterwards used for an application that combines multiples convolutions concurrently: generalized crosstalk cancellation and equalization. The proposed implementation can successfully manage two di erent and common situations: size of bu ers that are much larger than the size of the lters and size of bu ers that are much smaller than the size of the lters. Two spatial audio applications that use the GPU as a co-processor have been developed from the massive multichannel ltering. First application deals with binaural audio. Its main feature is that this application is able to synthesize sound sources in spatial positions that are not included in the database of HRTF and to generate smoothly movements of sound sources. Both features were designed after di erent tests (objective and subjective). The performance regarding number of sound source that could be rendered in real time was assessed on GPUs with di erent GPU architectures. A similar performance is measured in a Wave Field Synthesis system (second spatial audio application) that is composed of 96 loudspeakers. The proposed GPU-based implementation is able to reduce the room e ects during the sound source rendering. A well-known approach for sound source localization in noisy and reverberant environments is also addressed on a multi-GPU system. This is the case of the Steered Response Power with Phase Transform (SRPPHAT) algorithm. Since localization accuracy can be improved by using high-resolution spatial grids and a high number of microphones, accurate acoustic localization systems require high computational power. The solutions implemented in this thesis are evaluated both from localization and from computational performance points of view, taking into account different acoustic environments, and always from a real-time implementation perspective. Finally, This manuscript addresses also massive multichannel ltering when the lters present an In nite Impulse Response (IIR). Two cases are analyzed in this manuscript: 1) IIR lters composed of multiple secondorder sections, and 2) IIR lters that presents an allpass response. Both cases are used to develop and accelerate two di erent applications: 1) to execute multiple Equalizations in a WFS system, and 2) to reduce the dynamic range in an audio signal.Belloch Rodríguez, JA. (2014). PERFORMANCE IMPROVEMENT OF MULTICHANNEL AUDIO BY GRAPHICS PROCESSING UNITS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/40651TESISPremios Extraordinarios de tesis doctorale

    Perceptual techniques in audio quality assessment

    Get PDF
    corecore