957 research outputs found

    Behavioral modeling techniques for power amplifier digital pre-distortion

    Get PDF
    Abstract. The dramatic increase in the capacity of telecommunication networks has increased the requirements of the devices, one example of which is the continuously widening bandwidth. Using broadband signals requires often high linearity from the transmitter — and especially from the power amplifier at the end of the transmitter chain — but at the same time, it should operate as efficiently as possible. The power amplifier is the most power consuming component in the transmitter and inherently nonlinear, so its linearization is an essential part of the overall system performance. Of the current linearization techniques, digital pre-distortion has established itself as the most common tool for providing better linearity and efficiency in a power amplifier and transmitter. In this thesis, the performance of power amplifier models used in digital pre-distortion was investigated and their differences compared to the more complex reference model used in the actual base station product. The aim of this thesis was to create a behavioral model that corresponds the physical component as accurately as the reference model. This behavioral model could be used for example to design and optimize a power amplifier and linearization algorithm without the need for the secret model for the product. This, in its turn, would result in more efficient work with third parties such as component vendors and reduce the linearization time. The performance parameters of the behavioral models were introduced at the beginning of the thesis. These were also used in later parts to analyse the measurement results. Power amplifier linearization measurements were performed under laboratory conditions on a MATLAB® test bench. From the results, it was found that the use of a simple memoryless behavioral model is not enough to describe the physical nonlinear component with sufficient accuracy. The results also showed that the complexity of the model reduces its accuracy if the model coefficients are not correctly positioned. In this thesis, we succeeded in creating a memory model that describes the reference model sufficiently accurately on several meters, taking into account also the memory effects of the power amplifier. This thesis thus provides a good basis for further development of the actual modeling tool for product projects.Tehovahvistimen käyttäytymistason mallinnustekniikat esisärötyksen tueksi. Tiivistelmä. Tietoliikenneverkkojen kapasiteetin räjähdysmäinen kasvu on lisännyt laitteiden vaatimuksia, joista yhtenä esimerkkinä on jatkuvasti suureneva kaistanleveys. Laajakaistaiset signaalit vaativat usein lähettimeltä — ja etenkin lähettimen loppupäässä olevalta tehovahvistimelta — korkeaa lineaarisuutta, mutta samalla sen on toimittava mahdollisimman tehokkaasti. Tehovahvistin on lähettimen eniten tehoa kuluttava komponentti ja luonnostaan epälineaarinen, joten sen linearisointi on oleellinen osa koko systeemin suorituskykyä. Nykyisistä linearisointitekniikoista digitaalinen esisärötys on vakiinnuttanut paikkansa yleisimpänä työkaluna paremman lineaarisuuden ja tehokkuuden saavuttamiseksi tehovahvistimessa. Tässä diplomityössä tutkittiin digitaalisessa esisärötyksessä käytettävien käyttäytymistason tehovahvistinmallien suorituskykyjä ja niiden eroja varsinaisessa tukiasematuotteessa käytettävään, monimutkaisempaan referenssimalliin verrattuna. Työn tavoitteena oli luoda käyttäytymismalli, jolla voidaan kuvata fyysistä komponenttia yhtä tarkasti kuin referenssimallilla. Mallia voitaisiin käyttää esimerkiksi uuden tehovahvistimen suunnittelussa ilman, että kaupalliseen tuotteeseen tulevaa, salaista referenssimallia on tarve käyttää. Näin voitaisiin tehostaa työskentelyä ulkopuolisten tahojen, kuten komponenttitoimittajien kanssa ja vähentää linearisointiin käytettävää aikaa. Työn alussa esiteltiin käyttäytymismallien suorituskykyparametrit, joita käytettiin mittaustulosten analysointiin. Tehovahvistimien linearisointimittaukset suoritettiin laboratorio-olosuhteissa MATLAB®-testipenkissä. Mittauksissa todettiin, että yksinkertainen, muistiton käyttäytymismalli ei riitä kuvaamaan fyysistä komponenttia riittävän tarkasti. Tuloksista pääteltiin myös, että liian kompleksinen malli heikentää sen tarkkuutta. Työssä onnistuttiin luomaan muistillinen käyttäytymismalli, joka kuvaa referenssimallia riittävän tarkasti usealla eri mittarilla tarkastellen — huomioiden osaltaan myös tehovahvistimen muistiefektejä. Tämä opinnäytetyö tarjoaa siis hyvän pohjan varsinaisen mallinnustyökalun jatkokehitykselle tuoteprojekteihin

    Design and implementation of an ETSI-SDR OFDM transmitter with power amplifier linearizer

    Get PDF
    Satellite radio has attained great popularity because of its wide range of geographical coverage and high signal quality as compared to the terrestrial broadcasts. Most Satellite Digital Radio (SDR) based systems favor multi-carrier transmission schemes, especially, orthogonal frequency division multiplexing (OFDM) transmission because of high data transfer rate and spectral efficiency. It is a challenging task to find a suitable platform that supports fast data rates and superior processing capabilities required for the development and deployment of the new SDR standards. Field programmable gate array (FPGA) devices have the potential to become suitable development platform for such standards. Another challenging factor in SDR systems is the distortion of variable envelope signals used in OFDM transmission by the nonlinear RF power amplifiers (PA) used in the base station transmitters. An attractive option is to use a linearizer that would compensate for the nonlinear effects of the PA. In this research, an OFDM transmitter, according to European Telecommunications Standard Institute (ETSI) SDR Technical Specifications 2007-2008, was designed and implemented on a low-cost Xilinx FPGA platform. A weakly nonlinear PA, operating in the L-band SDR frequency (1.450-1.490GHz), was used for signal transmission. An FPGA-based, low-cost, adaptive linearizer was designed and implemented based on the digital predistortion (DPD) reference design from Xilinx, to correct the distortion effects of the PA on the transmitted signal

    Multi look-up table FPGA implementation of an adaptive digital predistorter for linearizing RF power amplifiers with memory effects

    Get PDF
    This paper presents a hardware implementation of a digital predistorter (DPD) for linearizing RF power amplifiers (PAs) for wideband applications. The proposed predistortion linearizer is based on a nonlinear auto-regressive moving average (NARMA) structure, which can be derived from the NARMA PA behavioral model and then mapped into a set of scalable lookup tables (LUTs). The linearizer takes advantage of its recursive nature to relax the LUT count needed to compensate memory effects in PAs. Experimental support is provided by the implementation of the proposed NARMA DPD in a field-programmable gate-array device to linearize a 170-W peak power PA, validating the recursive DPD NARMA structure for W-CDMA signals and flexible transmission bandwidth scenarios. To the best of the authors’ knowledge, it is the first time that a recursive structure is experimentally validated for DPD purposes. In addition to the results on PA efficiency and linearity, this paper addresses many practical implementation issues related to the use of FPGA in DPD applications, giving an original insight on actual prototyping scenarios. Finally, this study discusses the possibility of further enhancing the overall efficiency by degrading the PA operation mode, provided that DPD may be unavoidable due to the impact of memory effects.Peer Reviewe

    Nonlinearity Mitigation in WDM Systems: Models, Strategies, and Achievable Rates

    Get PDF
    After reviewing models and mitigation strategies for interchannel nonlinear interference (NLI), we focus on the frequency-resolved logarithmic perturbation model to study the coherence properties of NLI. Based on this study, we devise an NLI mitigation strategy which exploits the synergic effect of phase and polarization noise compensation (PPN) and subcarrier multiplexing with symbol-rate optimization. This synergy persists even for high-order modulation alphabets and Gaussian symbols. A particle method for the computation of the resulting achievable information rate and spectral efficiency (SE) is presented and employed to lower-bound the channel capacity. The dependence of the SE on the link length, amplifier spacing, and presence or absence of inline dispersion compensation is studied. Single-polarization and dual-polarization scenarios with either independent or joint processing of the two polarizations are considered. Numerical results show that, in links with ideal distributed amplification, an SE gain of about 1 bit/s/Hz/polarization can be obtained (or, in alternative, the system reach can be doubled at a given SE) with respect to single-carrier systems without PPN mitigation. The gain is lower with lumped amplification, increases with the number of spans, decreases with the span length, and is further reduced by in-line dispersion compensation. For instance, considering a dispersion-unmanaged link with lumped amplification and an amplifier spacing of 60 km, the SE after 80 spans can be be increased from 4.5 to 4.8 bit/s/Hz/polarization, or the reach raised up to 100 spans (+25%) for a fixed SE.Comment: Submitted to Journal of Lightwave Technolog

    Digital Predistorion of 5G Millimeter-Wave Active Phased Arrays using Artificial Neural Networks

    Get PDF

    ワイヤレス通信のための先進的な信号処理技術を用いた非線形補償法の研究

    Get PDF
    The inherit nonlinearity in analogue front-ends of transmitters and receivers have had primary impact on the overall performance of the wireless communication systems, as it gives arise of substantial distortion when transmitting and processing signals with such circuits. Therefore, the nonlinear compensation (linearization) techniques become essential to suppress the distortion to an acceptable extent in order to ensure sufficient low bit error rate. Furthermore, the increasing demands on higher data rate and ubiquitous interoperability between various multi-coverage protocols are two of the most important features of the contemporary communication system. The former demand pushes the communication system to use wider bandwidth and the latter one brings up severe coexistence problems. Having fully considered the problems raised above, the work in this Ph.D. thesis carries out extensive researches on the nonlinear compensations utilizing advanced digital signal processing techniques. The motivation behind this is to push more processing tasks to the digital domain, as it can potentially cut down the bill of materials (BOM) costs paid for the off-chip devices and reduce practical implementation difficulties. The work here is carried out using three approaches: numerical analysis & computer simulations; experimental tests using commercial instruments; actual implementation with FPGA. The primary contributions for this thesis are summarized as the following three points: 1) An adaptive digital predistortion (DPD) with fast convergence rate and low complexity for multi-carrier GSM system is presented. Albeit a legacy system, the GSM, however, has a very strict requirement on the out-of-band emission, thus it represents a much more difficult hurdle for DPD application. It is successfully implemented in an FPGA without using any other auxiliary processor. A simplified multiplier-free NLMS algorithm, especially suitable for FPGA implementation, for fast adapting the LUT is proposed. Many design methodologies and practical implementation issues are discussed in details. Experimental results have shown that the DPD performed robustly when it is involved in the multichannel transmitter. 2) The next generation system (5G) will unquestionably use wider bandwidth to support higher throughput, which poses stringent needs for using high-speed data converters. Herein the analog-to-digital converter (ADC) tends to be the most expensive single device in the whole transmitter/receiver systems. Therefore, conventional DPD utilizing high-speed ADC becomes unaffordable, especially for small base stations (micro, pico and femto). A digital predistortion technique utilizing spectral extrapolation is proposed in this thesis, wherein with band-limited feedback signal, the requirement on ADC speed can be significantly released. Experimental results have validated the feasibility of the proposed technique for coping with band-limited feedback signal. It has been shown that adequate linearization performance can be achieved even if the acquisition bandwidth is less than the original signal bandwidth. The experimental results obtained by using LTE-Advanced signal of 320 MHz bandwidth are quite satisfactory, and to the authors’ knowledge, this is the first high-performance wideband DPD ever been reported. 3) To address the predicament that mobile operators do not have enough contiguous usable bandwidth, carrier aggregation (CA) technique is developed and imported into 4G LTE-Advanced. This pushes the utilization of concurrent dual-band transmitter/receiver, which reduces the hardware expense by using a single front-end. Compensation techniques for the respective concurrent dual-band transmitter and receiver front-ends are proposed to combat the inter-band modulation distortion, and simultaneously reduce the distortion for the both lower-side band and upper-side band signals.電気通信大学201

    Auxiliary-Path-Assisted Digital Linearization of Wideband Wireless Receivers

    Get PDF
    Wireless communication systems in recent years have aimed at increasing data rates by ensuring flexible and efficient use of the radio spectrum. The dernier cri in this field has been in the area of carrier aggregation and cognitive radio. Carrier aggregation is a major component of LTE-Advanced. With carrier aggregation, a number of separate LTE carriers can be combined, by mobile network operators, to increase peak data rates and overall network capacity. Cognitive radios, on the other hand, allow efficient spectrum usage by locating and using spatially vacant spectral bands. High monolithic integration in these application fields can be achieved by employing receiver architectures such as the wideband direct conversion receiver topology. This is advantageous from the view point of cost, power consumption and size. However, many challenges exist, of particular importance is nonlinear distortion arising from analog front-end components such as low noise amplifiers (LNA). Nonlinear distortions especially become severe when several signals of varying amplitudes are received simultaneously. In such cases, nonlinear distortions stemming from strong signals may deteriorate the reception of the weaker signals, and also impair the receiver’s spectrum sensing capabilities. Nonlinearity, usually a consequence of dynamic range limitation, degrades performance in wideband multi-operator communications systems, and it will have a notable role in future wireless communication system design. This thesis presents a digital domain linearization technique that employs a very nonlinear auxiliary receiver path for nonlinear distortion cancellation. The proposed linearization technique relies on one-time adaptively-determined linearization coefficients for cancelling nonlinear distortions. Specifically, we take a look at canceling the troublesome in-band third order intermodulation products using the proposed technique. The proposed technique can be extended to cancel out both even and higher order odd intermodulation products. Dynamic behavioral models are used to account for RF nonlinearities, including memory effects which cannot be ignored in the wideband scenario. Since the proposed linearization technique involves the use of two receiver paths, techniques for correcting phase delays between the two paths are also introduced. Simplicity is the hallmark of the proposed linearization technique. It can achieve up to +30 dBm in IIP3 performance with ADC resolution being a major performance bottleneck. It also shows strong tolerance to strong blocker nonlinearities

    Transmitter Linearization for mm-Wave Communications Systems

    Get PDF
    There is an ever increasing need for enabling higher data rates in modern communication systems which brings new challenges in terms of the power consumption and nonlinearity of hardware components. These problems become prominent in power amplifiers (PAs) and can significantly degrade the performance of transmitters, and hence the overall communication system. Hence, it is of central importance to design efficient PAs with a linear operation region. This thesis proposes a methodology and a comprehensive framework to address this challenge. This is accomplished by application of predistortion to a mm-wave PA and an E-band IQ transmitter while investigating the trade-offs between linearity, efficiency and predistorter complexity using the proposed framework.In the first line of work, we have focused on a mm-wave PA. A PA has high efficiency at high input power at the expense of linearity, whereas it operates linearly for lower input power levels while sacrificing efficiency. To attain both linearity and efficiency, predistortion is often used to compensate for the PA nonlinearity. Yet, the trade-offs related to predistortion complexities are not fully understood. To address this challenge, we have used our proposed framework for evaluation of predistorters using modulated test signals and implemented it using digital predistortion and a mm-wave PA. This set-up enabled us to investigate the trade-offs between linearity, efficiency and predistorter complexity in a systematic manner. We have shown that to achieve similar linearity levels for different PA classes, predistorters with different complexities are needed and provided guidelines on the achievable limits in term linearity for a given predistorter complexity for different PA classes.In the second line of work, we have focused on linearization of an E-band transmitter using a baseband analog predistorter (APD) and under constraints given by a spectrum emission standard. In order to use the above proposed framework with these components, characterizations of the E-band transmitter and the APD are performed. In contrast to typical approaches in the literature, here joint mitigation of the PA and I/Q modulator impairments is used to model the transmitter. Using the developed models, optimal model parameters in terms of output power at the mask limit are determined. Using these as a starting point, we have iteratively optimized operating point of the APD and linearized the E-band transmitter. The experiments demonstrated that the analog predistorter can successfully increase the output power by 35% (1.3 dB) improvement while satisfying the spectrum emission mask
    corecore