7,258 research outputs found

    Spike sorting for large, dense electrode arrays

    Get PDF
    Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%

    Retinal oscillations carry visual information to cortex

    Get PDF
    Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the image over time. The other operates in the gamma frequency band (40-80 Hz) and is encoded by spike time relative to the retinal oscillations. Because these oscillations involve extensive areas of the retina, it is likely that the second channel transmits information about global features of the visual scene. At times, the second channel conveyed even more information than the first.Comment: 21 pages, 10 figures, submitted to Frontiers in Systems Neuroscienc

    Feasibility of free space quantum key distribution with coherent polarization states

    Full text link
    We demonstrate for the first time the feasibility of free space quantum key distribution with continuous variables under real atmospheric conditions. More specifically, we transmit coherent polarization states over a 100m free space channel on the roof of our institute's building. In our scheme, signal and local oscillator are combined in a single spatial mode which auto-compensates atmospheric fluctuations and results in an excellent interference. Furthermore, the local oscillator acts as spatial and spectral filter thus allowing unrestrained daylight operation.Comment: 12 pages, 8 figures, extensions in sections 2, 3.1, 3.2 and 4. This is an author-created, un-copyedited version of an article accepted for publication in New Journal of Physics (Special Issue on Quantum Cryptography: Theory and Practice). IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i
    corecore