2,330 research outputs found

    An improved block matching algorithm for motion estimation invideo sequences and application in robotics

    Get PDF
    Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms

    An improved block matching algorithm for motion estimation in video sequences and application in robotics

    Get PDF
    Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms

    Computer vision and optimization methods applied to the measurements of in-plane deformations

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Get PDF
    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.This research is partially supported by the Spanish Ministry of Education, Culture and Sports under FPU fellowship with identifier FPU13/03917

    Genetic algorithm for automatic optical inspection

    Get PDF

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data

    New Approaches in Cognitive Radios using Evolutionary Algorithms

    Get PDF
    Cognitive radio has claimed a promising technology to exploit the spectrum in an ad hoc network. Due many techniques have become a topic of discussion on cognitive radios, the aim of this paper was developed a contemporary survey of evolutionary algorithms in Cognitive Radio. According to the art state, this work had been collected the essential contributions of cognitive radios with the particularity of base they research in evolutionary algorithms. The main idea was classified the evolutionary algorithms and showed their fundamental approaches. Moreover, this research will be exposed some of the current issues in cognitive radios and how the evolutionary algorithms will have been contributed. Therefore, current technologies have matters presented in optimization, learning, and classification over cognitive radios where evolutionary algorithms can be presented big approaches. With a more comprehensive and systematic understanding of evolutionary algorithms in cognitive radios, more research in this direction may be motivated and refined

    Gene expression data analysis using novel methods: Predicting time delayed correlations and evolutionarily conserved functional modules

    Get PDF
    Microarray technology enables the study of gene expression on a large scale. One of the main challenges has been to devise methods to cluster genes that share similar expression profiles. In gene expression time courses, a particular gene may encode transcription factor and thus controlling several genes downstream; in this case, the gene expression profiles may be staggered, indicating a time-delayed response in transcription of the later genes. The standard clustering algorithms consider gene expression profiles in a global way, thus often ignoring such local time-delayed correlations. We have developed novel methods to capture time-delayed correlations between expression profiles: (1) A method using dynamic programming and (2) CLARITY, an algorithm that uses a local shape based similarity measure to predict time-delayed correlations and local correlations. We used CLARITY on a dataset describing the change in gene expression during the mitotic cell cycle in Saccharomyces cerevisiae. The obtained clusters were significantly enriched with genes that share similar functions, reflecting the fact that genes with a similar function are often co-regulated and thus co-expressed. Time-shifted as well as local correlations could also be predicted using CLARITY. In datasets, where the expression profiles of independent experiments are compared, the standard clustering algorithms often cluster according to all conditions, considering all genes. This increases the background noise and can lead to the missing of genes that change the expression only under particular conditions. We have employed a genetic algorithm based module predictor that is capable to identify group of genes that change their expression only in a subset of conditions. With the aim of supplementing the Ustilago maydis genome annotation, we have used the module prediction algorithm on various independent datasets from Ustilago maydis. The predicted modules were cross-referenced in various Saccharomyces cerevisiae datasets to check its evolutionarily conservation between these two organisms. The key contributions of this thesis are novel methods that explore biological information from DNA microarray data
    corecore